Applying Improvements of ELM in Medical Diagnosis

Một phần của tài liệu Luận án tiến sĩ Khoa học máy tính: Linear and Nonlinear Analysis for Transduced Current Curves of Electrochemical Biosensors (Trang 150 - 169)

CHAPTER IX. CONCLUSIONS AND FUTURE WORKS

9.2.4 Applying Improvements of ELM in Medical Diagnosis

The neural networks have applied successfully in data mining, biomedicine and biomedical applications due to their abilities to resolve problems that are very difficult to handle by classical methods. Traditional training algorithms based on gradient-descent have some problems such as over-fitting, learning rate, epochs , etc..

The ELM algorithm can overcome these problems but often requires a large number of hidden units. Therefore, the improvements of ELM in our research can be effective applications of SLFNs in data mining, biomedicine and biomedical applications.

REFERENCES

[1] J. S. Krinsley, "Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients," Mayo Clinic

Proceedings, vol. 78, pp. 1471-1478, Dec 2003.

[2] H. L. Goldsmith, E. S. Kaufer, and F. A. McIntosh, "Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow,"

Biorheology, vol. 32, pp. 537-52, Sep-Oct 1995.

[3] E. S. Kilpatrick, A. G. Rumley, H. Myint, M. H. Dominiczak, and M. Small,

"The effect of variations in haematocrit, mean cell volume and red blood cell count on reagent strip tests for glucose," Ann Clin Biochem, vol. 30 ( Pt 5), pp.

485-7, Sep 1993.

[4] E. S. Kilpatrick, A. G. Rumley, and E. A. Smith, "Variations in sample pH and pO2 affect ExacTech meter glucose measurements," Diabet Med, vol. 11, pp.

506-9, Jun 1994.

[5] R. F. Louie, Z. P. Tang, D. V. Sutton, J. H. Lee, and G. J. Kost, "Point-of-care glucose testing - Effects of critical care variables, influence of reference instruments, and a modular glucose meter design," Archives of Pathology &

Laboratory Medicine, vol. 124, pp. 257-266, Feb 2000.

[6] Z. Tang, R. F. Louie, J. H. Lee, D. M. Lee, E. E. Miller, and G. J. Kost,

"Oxygen effects on glucose meter measurements with glucose dehydrogenase- and oxidase-based test strips for point-of-care testing," Crit Care Med, vol. 29, pp. 1062-70, May 2001.

[7] Z. Tang, R. F. Louie, M. Payes, K. C. Chang, and G. J. Kost, "Oxygen effects on glucose measurements with a reference analyzer and three handheld meters," Diabetes Technol Ther, vol. 2, pp. 349-62, Autumn 2000.

[8] Z. P. Tang, J. H. Lee, R. F. Louie, and G. J. Kost, "Effects of different hematocrit levels on glucose measurements with handheld meters for point-of- care testing," Archives of Pathology & Laboratory Medicine, vol. 124, pp.

1135-1140, Aug 2000.

[9] E. F. Treo, C. J. Felice, M. C. Tirado, M. E. Valentinuzzi, and D. O. Cervantes,

"Hematocrit measurement by dielectric spectroscopy," Ieee Transactions on

Biomedical Engineering, vol. 52, pp. 124-127, Jan 2005.

[10] G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, pp. 489-501, Dec 2006.

[11] D. G. Kleinbaum, L. L. Kupper, K. E. Muller, and A. Nizam, Applied

Regression Analysis and Other Multivariable Methods: Duxbury Press, 1997.

[12] P. J. Brown, Measurement, Regression and Calibration: Oxford University Press, 1994.

[13] J. J. Peterson, S. Cahya, and E. del Castillo, "A general approach to confidence regions for optimal factor levels of response surfaces," Biometrics, vol. 58, pp.

422-431, Jun 2002.

[14] G. King, J. Honaker, A. Joseph, and K. Scheve, "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," The

American Political Science Review, vol. 95, pp. 49-69, March 2001.

[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory vol. 1: Prentice Hall, 1993.

[16] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural

computation: Addison Wesley Publishing Company, 1991.

[17] D. R. Hush and B. G. Horne, "Progress in Supervised Neural Networks: What’s New Since Lippmann?," in IEEE Signal Processing magazine. vol. 10, 1993, pp. 8-39.

[18] P. J. G. Lisboa, E. C. Ifeachor, and P. S. Szczepaniak, Artificial neural networks

in Biomedicine: Springer-Verlag London Berlin Heidelberg, 2000.

[19] R. N. G. Naguib and G. V. Sherbet, Artificial Neural Networks in Cancer

Diagnosis, Prognosis, and Patient Management Washington DC: CRC Press,

2001.

[20] R. J. Schalkoff, Artificial Neural Networks: MIT Press and McGraw-Hill Companies, 1997.

[21] P. K. Simpson, Artificial Neural Systems: Foundations, Paradigms,

Applications, and Implementations. New York: Pergamon Press, 1990.

[22] J. M. Zurada, Introduction to Artificial Neural Systems: West Publishing Company, 1992.

[23] D. Nguyen and B. Widrow, "Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights," in Proceedings

of the International Joint Conference on Neural Networks. vol. 3, 1990, pp. 21-

26.

[24] A. A. Suratgar, M. B. Tavakoli, and A. Hoseinabadi, "Modified Levenberg- Marquardt Method for Neural Networks Training," in Proceedings of World

academy of Science, engineering and technology. vol. 6, 2005, pp. 46-48.

[25] R. Hecht-Nielsen, "Kolmogorov's mapping neural network existence theorem,"

in The First IEEE Annual International Conference on Neural Networks. vol.

3 San Diego, CA, 1987, pp. 11-13.

[26] G. Cybenko, "Approximation by superpositions of a sigmoidal function,"

Mathematics of Control, Signals, and Systems (MCSS), vol. 2, pp. 303-314,

1989.

[27] K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.

[28] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.

[29] K. Hornik, "Approximation capabilities of multilayer feedforward networks,"

Neural Networks, vol. 4, pp. 251-257, 1991.

[30] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.

[31] T. P. Chen, H. Chen, and R. W. Liu, "Approximation Capability in C((R)over- Bar(N)) by Multilayer Feedforward Networks and Related Problems," Ieee

Transactions on Neural Networks, vol. 6, pp. 25-30, Jan 1995.

[32] Y. Ito, "Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory," Neural Networks, vol.

4, pp. 385 - 394, 1991.

[33] Y. Ito, "Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling," Neural

Networks, vol. 5, pp. 105 -115, 1992.

[34] G.-B. Huang and H. A. Babri, "General Approximation Theorem on Feedforward Networks," in Proc. of Int’l Conf. on Information,

Communications and Signal Processing (ICIS’97), 1997, pp. 698-702.

[35] S.-C. Huang and Y.-F. Huang, "Bounds on the number of hidden neurons in multilayer perceptrons," IEEE transactions on neural networks, vol. 2, pp. 47- 55, 1991.

[36] M. A. Sartori and P. J. Antsaklis, "A simple method to derive bounds on the size and to train multilayer neural networks," IEEE Transactions on Neural

Networks, vol. 2, pp. 467-471, 1991.

[37] G. B. Huang and H. A. Babri, "Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions," Ieee Transactions on Neural Networks, vol. 9, pp. 224-229, Jan

1998.

[38] V. Vapnik, The Nature of Statistical Learning Theory: Springer, 1999.

[39] V. N. Vapnik, Statistical Learning Theory: Wiley-Interscience, 1998.

[40] V. N. Vapnik and A. Y. Chervonenkis, "On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities," Theory of Probability

and its Applications, vol. 16, pp. 264-280, 1971.

[41] V. Vapnik, S. E. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Advances in

Neural Information Processing Systems 9 Cambridge, MA: MIT Press, 1997,

pp. 281-287.

[42] A. J. Smola, "Learning with Kernels," PhD thesis, Technische Universitọt Berlin, 1998.

[43] W. Karush, "Minima of Functions of Several Variables with Inequalities as Side Constraints," in Department of Mathematics. vol. MSc Thesis: University of

Chicago, 1939.

[44] H. W. Kuhn and A. W. Tucker, "Nonlinear programming," in Proceedings of the

Second Berkeley Symposium on mathematical Statistics and Probability

Berkeley: University of California Press, 1951, pp. 481-492.

[45] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,

"Improvements to Platt's SMO algorithm for SVM classifier design," Neural

Computation, vol. 13, pp. 637-649, Mar 2001.

[46] A. J. Smola and B. Scholkopf, "A tutorial on support vector regression,"

Statistics and Computing, vol. 14, pp. 199-222, Aug 2004.

[47] B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New support vector algorithms," Neural Computation, vol. 12, pp. 1207-1245, May 2000.

[48] G. B. Huang and L. Chen, "Convex incremental extreme learning machine,"

Neurocomputing, vol. 70, pp. 3056-3062, Oct 2007.

[49] G. B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes,"

Ieee Transactions on Neural Networks, vol. 17, pp. 879-892, Jul 2006.

[50] G. B. Huang, "Learning capability and storage capacity of two-hidden-layer feedforward networks," Ieee Transactions on Neural Networks, vol. 14, pp.

274-281, Mar 2003.

[51] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its

Applications: John Wiley & Sons Inc, 1971.

[52] D. Serre, Matrices: Theory and Applications. New York: Springer, 2002.

[53] S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," Ieee Transactions on Neural Networks, vol. 16, pp. 24-38, Jan 2005.

[54] N. Y. Liang, G. B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," Ieee

Transactions on Neural Networks, vol. 17, pp. 1411-1423, Nov 2006.

[55] Q. Y. Zhu, A. K. Qin, P. N. Suganthan, and G. B. Huang, "Evolutionary extreme learning machine," Pattern Recognition, vol. 38, pp. 1759-1763, Oct 2005.

[56] R. Storn and K. Price, "Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces," Journal of Global

Optimization, vol. 11, pp. 341 - 359 December 1997.

[57] Hieu Trung Huynh and Yonggwan Won, "Small number of hidden units for ELM with two-stage liner model," Ieice Transactions on Information and

Systems, vol. E91d, pp. 1042-1049, Apr 2008.

[58] P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," Ieee Transactions on Information Theory, vol. 44, pp. 525-536, Mar

1998.

[59] Hieu Trung Huynh, Jung-ja Kim, and Y. Won, "An Improvement of Extreme Learning Machine for Compact Single-Hidden-Layer Feedforward Neural Networks," International Journal of Neural Systems, vol. 18, pp. 433-441,

2008.

[60] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems.

Washingston: Winston & Son, 1977.

[61] Hieu Trung Huynh and Yonggwan Won, "Evolutionary Algorithm for Training Compact Single Hidden Layer Feedforward Neural Networks," in The IEEE

2008 Int’l Joint Conference on Neural networks (IJCNN2008), 2008, pp. 3027-

3032.

[62] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed. New York: John Wiley, 1994.

[63] R. K. Pearson, "Outliers in process modeling and identification," Ieee

Transactions on Control Systems Technology, vol. 10, pp. 55-63, Jan 2002.

[64] D. Hawkins, Identification of Outliers, 1st ed.: Springer, 1980.

[65] M. M. Breunig, H.-p. Kriegel, R. T. Ng, and J. S, "LOF: Identifying Density- Based Local Outliers," in Proc. ACM SIGMOD 2000 Int’l Conference on

Management of Data, Texas, 2000, pp. 427-438.

[66] X. Lu, Y. Li, and X. Zhang, "A simple strategy for detecting outlier samples in microarray data," in the 8th Int’l Conference on Control, Automation, Robotics

and Vision Kunming, 2004, pp. 1331-1335.

[67] E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in large datasets," in Proceedings of the 24th International Conference on Very

Large Data Bases, 1998, pp. 392-403.

[68] B. G. Amidan, T. A. Ferryman, and S. K. Cooley, "Data Outlier Detection using the Chebyshev Theorem," in the 2005 IEEE Aerospace Conference, 2005, pp.

3814-3819.

[69] Huynh Trung Hieu and Yonggwan Won, "A Method for Outlier Detection based on Area Descent," in Proc. 21st Int’l Conference on Circuit/Systems,

Computers and Communications. vol. 1, 2006, pp. 193-196.

[70] Hieu Trung Huynh, M. T. T. Hoang, N. H. Vo, and Yonggwan Won, "Outlier Detection with Two-Stage Area-Descent Method for Linear Regression," in The

6th WSEAS Int’l Conf. on Applied computer science (ACS’06), 2006, pp. 463-

468.

[71] Hieu Trung Huynh, N. H. Vo, M. T. T. Hoang, and Yonggwan Won, "An Improvement of Outlier Detection in Linear Regression based on Area- Descent," WSEAS Trans. on Computer Research, vol. 1, pp. 174-180, 2006.

[72] Hieu Trung Huynh, N. H. Vo, M.-T. T. Hoang, and Yonggwan Won,

"Performance enhancement of RBF networks in classification by removing outliers in the training phase," in Lecture Note in Artificial Intelligence,

LNAI4617: Springer-Verlag Berlin Heidelberg, 2007, pp. 341-350.

[73] Hieu Trung Huynh, N. H. Vo, M.-T. T. Hoang, and Yonggwan Won, "Outlier Treatment for SLFNs in Classification," in the 5th Int’l conf. on computational

science and applications (ICCSA2007): IEEE, 2007, pp. 104 -109.

[74] Hieu Trung Huynh and Yonggwan Won, "Performance Enhancement of SLFNs in Classification by Reducing Effect of Outliers," in Proc. 22th Int’l

Conference on Circuit/Systems, Computers and Communications. vol. 1, 2007,

pp. 159-160.

[75] Hieu Trung Huynh and Yonggwan Won, "Two-Stage Extreme Learning Machine for SLFNs in Regression," in Proc. 22th Int’l Conference on

Circuit/Systems, Computers and Communications. vol. 1, 2007, pp. 161-162.

[76] Hieu Trung Huynh and Yonggwan Won, "Weighted Least Squares Scheme for Reducing Effects of Outliers in Regression Based on Extreme Learning Machine," International Journal of Digital Content Technology and its Applications, in press, 2008.

[77] J. Liu and P. Gader, "Outlier rejection with MLPs and Variants of RBF Networks," in Proc. 15th Int’l Conf. on Pattern Recognition. vol. 2, 2000, pp.

680-683.

[78] A. Aris, J. M. Padro, J. O. Bonnin, and J. M. Caralps, "Prediction of hematocrit changes in open-heart surgery without blood transfusion," Journal of

Cardiovascular Surgery, vol. 25, pp. 545-548, 1984.

[79] J. Z. Ma, J. Ebben, H. Xia, and A. J. Collins, "Hematocrit level and associated mortality in hemodialysis patients," J Am Soc Nephrol, vol. 10, pp. 610-619, Mar 1999.

[80] F. Fernandez, C. Goudable, P. Sie, H. Ton-That, D. Durand, J. M. Suc, and B.

Boneu, "Low haematocrit and prolonged bleeding time in uraemic patients:

effect of red cell transfusions," Br J Haematol, vol. 59, pp. 139-48, Jan 1985.

[81] J. Fuchs, I. Weinberger, A. Teboul, Z. Rotenberg, H. Joshua, and J. Agmon,

"Plasma viscosity and haematocrit in the course of acute myocardial infarction," Eur Heart J, vol. 8, pp. 1195-200, Nov 1987.

[82] K. Maeda, T. Shinzato, F. Yoshida, Y. Tsuruta, M. Usuda, K. Yamada, T.

Ishihara, F. Inagaki, I. Igarashi, and T. Kitano, "Newly developed circulating blood volume-monitoring system and its clinical application for measuring changes in blood volume during hemofiltration," Artif Organs, vol. 10, pp. 452- 9, Dec 1986.

[83] K. R. Foster and H. P. Schwan, "Dielectric properties of tissues and biological materials: a critical review," Crit Rev Biomed Eng, vol. 17, pp. 25-104, 1989.

[84] Hieu Trung Huynh and Yonggwan Won, "Hematocrit Estimation from Transduced Current Patterns Using Single Hidden Layer Feedforward Neural Networks," in the 2007 Int’l Conference on Convergence Information

Technology (ICCIT2007): IEEE, 2007, pp. 1384-1388.

[85] Hieu Trung Huynh and Yonggwan Won, "Neural Networks for the Estimation

of Hematocrit from Transduced Current Curves," in Proc. of the 2008 IEEE

Int’l Conf. on Networking, Sensing and Control, 2008, pp. 1517-1520.

[86] Hieu Trung Huynh and Yonggwan Won, "Hematocrit Estimation from Compact Single Hidden Layer Feedforward Neural Networks Trained by Evolutionary Algorithm," in Proc. of the 2008 IEEE World Congress on Computational

Intelligence, 2008, pp. 2967-2971.

[87] World Health Organisation Department of Noncommunicable Disease Surveillance, "Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications," 1999.

[88] M. H. Kutner, C. Nachtsheim, J. Neter, and W. Li, Applied Linear Statistical

Models: Mc Graw Hill, 2005.

[89] S. W. Looney and T. R. G. Jr, "Use of the Correlation Coefficient with

Normal Probability Plots," The American Statistician, vol. 39, pp. 75-79, 1985.

[90] D. Oberg and C. G. Ostenson, "Performance of glucose dehydrogenase-and glucose oxidase-based blood glucose meters at high altitude and low temperature," Diabetes Care, vol. 28, p. 1261, May 2005.

전기화학 바이오센서에서 발생되는 변환전류곡선의 선형 및 비선형 분석

HUYNH TRUNG HIEU

전남대학교대학원 컴퓨터정보통신공학과

(지도교수: 원용관)

(국문초록)

과학과 기술의 발달 덕택에, 광범위한 진단 시험을 정교한 실험실 장비들 없이도빠르고 간편하게 수행이 가능해졌으며, 이때 바이오 센서가 기술적으로 주요 역할을 한다. 바이오센서들은 복잡한 혼합물 및 분화합물의 분석 및 결정에 있어 화학 및 생화확 산업 뿐 아니라 의약 및 건강 산업 분야에서도 매우 유용하다. 일반적으로, 바이오센서들은 정확도, 비용, 가용성, 범위 및 간편성 등과 같은 기능적 특성과 디자인에 따라 분류 및 평가된다. 이러한 기준에 비춰, 가격과 가용성 측면에서 있어서, 과 같은 디자인 그리고 기능 특성에 기초를 두어 분류되고 평가될 수 있다. 이 기초에, 전기화학 바이오 센서는 정확성, 비용및 가용성 때문에 선호된다.

수 많은 노력을 들인 결과로, 혈중 포도당 측정을 위한 전기화학적 바이오센서는 현재 상업적으로 널리 활용되는 바이오센서가 되고 있다.

그들은 휴대형 기기와 함께 당뇨병 환자의 혈중 포도당 농도를 정상 수치에 가깝도록 유지하기 위하여 혈중 포도당 농도 수준을 감시에 적용되며, 이는 당뇨병으로 인한 합병증을 감소시킬 수 있다. 비록, 휴대형 기기가 혈중 포도당 농도를 감시하고 제어하기 위하여 편리하게 사용되고 있으나, 그들의 정확도는 요산 아스코르빈산 산, PO2, PCO2, pH, 헤마토크릿 등의 간섭에 의하여 크게 영향을 받으며, 그 중에서도 헤마토크릿이 휴대형 장치에 의한 측정에 가장 크게 영향을 미친다. 한편, 이러한 산화 가능 물질에 의한 간섭은 화학 방법으로 감소되는 수 있으나, 헤마토크릿의 간섭 영향을 줄이기 위한 소수의 현실적인 해결 방법만이 제안되었다. 그러나, 이러한 해결 방법은 바이오센서 제조를 위한 공정 절차를 복잡성과 가격을 상승시키며, 휴대형 기기로의 구현 또한 어렵다.

본 연구는 전기화학 바이오센서를 이용한 혈중 포도당 측정에 있어 휴대형 측정기의 정확도를 개선하기 위한 지능컴퓨팅 방법의 개발에 집중한다. 혈중 포도당 농도 측정에 있어서의 전기화학 바이오센서의 분석 원리는 생물학적 상호반응 과정에 근간을 두고 있는데, 혈중 포도당과 포도당 산화효소와의 상호작용과 전극에 의해 단순화된 효소 형태의 산화에 의하여 변환전류라 불리는 전기화학적 전류 신호가 발생된다. 이러한 변환전류는 시간에 따라 변화하며, 이는 변환전류 곡선(TCC)라

불리는 곡선으로 표현된다. 변환전류 곡선(TCC)는 어떤 방법으로든

휴대형 측정기를 이용한 포도당 농도의 결정에 사용되어 왔다. 그러나, 본

연구는 변환전류 곡선(TCC)의 변화 형태가 포도당에 대한 정보뿐만

아니라 간섭을 포함한 다양한 인자들도 포함한다는 믿음에서 출발하였다.

따라서, 변환전류 곡선(TCC)의 분석은 전기화학 바이오 센서를 사용한

측정의 성능을 개선하는데 결정적인 역할을 할 수 있다.

본 연구에서는, 변환전류 곡선을 분석하기 위하여 Support Vector Machines

(SVM) 과 신경회로망을 포함하는 선형 및 비선형 모델들이 연구된다.

그들은 헤마토크릿과 같은 결정적 요인들을 결정하고 전혈의 포도당 측정에 대한 정확도를 증가시키기 위한 적절한 방법을 제공할 수 있다. 이러한 모델들은 간단하고 복잡한 화학적 과정을 요구하지 않으며, 휴대형 기기의 가격을 낮춘다.

변환전류 곡선으로부터 헤마토크릿을 추정하기 위한 새로운 방법들이 개발되었다. 첫째가 변환전류 곡선으로부터 선택된 점들의 선형 조합에 의하여 헤마토크릿을 추정하는 선형 모델들이다. 둘째 방법으로는 극단학습기계(ELM: Extreme Learning Machine) 알고리즘에 의하여 학습되는 단일 은닉층 전방향 신경회로망(SLFN: Single Hidden Layer Feedforward

Neural network)과 작고 간결한 회로망을 얻기 위한 이의 개선 방법들을

사용하는 것이다. 입력 특징은 전류변환 곡선늬 선정점들이다. 전류 선정점을 헤마토크릿으로 사상하기 위하여 Support Vector Machines (SVM)이 사용되는 방법이 세번째이다. 본 연구의 제안 방법으로 측정된 결과는 휴대형 측정기기 상에서 헤마토크릿의 영향을 줄이거나 제거하기 위한 중요한 요소이다. 더불어, 진단의학 표지자를 값이 저렴한 휴대형 기기를 이용하여 신속하게 측정할 수 있음을 보여준다.

또한, 휴대형 측정기기를 이용하여 헤마토크릿의 영향을 줄임으로써 혈중 혈당 농도 측정의 정확도를 높이기 위한 방법을 연구하였다. 이를 위하여, 헤마토크릿 농도와 관련된 오류 분포 함수를 회귀분석을 통하여

Một phần của tài liệu Luận án tiến sĩ Khoa học máy tính: Linear and Nonlinear Analysis for Transduced Current Curves of Electrochemical Biosensors (Trang 150 - 169)

Tải bản đầy đủ (PDF)

(169 trang)