Thuật toán 3.1 và 3 không chỉ thực hiện song song đối với các bảng quyết định thành phần mà trong nhiều tr− ờng hợp, do việc phân nhóm, số thuộc tính

Một phần của tài liệu Luật kết hợp theo tiếp cận tập thô (Trang 76)

trong các bảng quyết định thành phần đã giảm đi nhiều so với bảng quyết định chung cho nên độ phức tạp tính toán tổng cộng đ−ợc giảm đi đáng kể.

Kết luận ch−ơng 3

L−ợng dữ liệu bùng nổ trong các hệ thông tin cùng với sự phát triển của các cơ sở dữ liệu trực tuyến đã thúc đẩy nhu cầu về khai phá dữ liệu song song và phân tán. Tính toán song song sẽ góp phần giảm bớt thời gian và chi phí xử lý, cho hệ thống khả năng phát triển. Nhiều thuật toán phát hiện song song luật kết hợp đ−ợc phát triển dựa trên các thuật toán tuần tự cho các nền phần cứng khác nhau. Các thuật toán này đ−ợc tổng kết và so sánh bởi Zaki [17], cung cấp một cái nhìn khái quát về sự phát triển của các mô hình phát hiện song song luật kết hợp (mục 3.2). Trên cơ sở các thuật toán tìm hiểu đ−ợc đã nêu ở ch−ơng 2, chúng tôi đề xuất mô hình phát hiện song song luật kết hợp theo cách tiếp cận tập thô cho hệ thông tin, với việc song song hóa đ−ợc thực hiện trên các b−ớc dữ liệu cho các mô hình tập trung và phân tán. Theo cách tiếp cận này, các luật tìm đ−ợc trong các hệ thông tin con đ−ợc sử dụng để tìm ra các luật có giá trị trên toàn hệ thống tổng thể, có sử dụng giá trị trọng số cho mỗi hệ con. Chúng tôi cũng đ−a ra một công thức để hợp nhất các luật kết hợp cục bộ để nhận đ−ợc luật kết hợp toàn cục (công thức 3.1).

Một phần của tài liệu Luật kết hợp theo tiếp cận tập thô (Trang 76)

Tải bản đầy đủ (PDF)

(81 trang)