Băng rộng theo nhu cầu

Một phần của tài liệu vấn đề bảo mật mạng wimax và ứng dụng (Trang 39 - 81)

Hệ thống không dây cho phép triển khai hiệu quả ngay cả khi sử dụng ngắn hạn. Với sự hỗ trợ của công nghệ 802.16a, hệ thống hotspot 802.11 vẫn đủ năng lực phục vụ dịch vụ kết nối tốc độ cao tại những hội chợ, triển lãm có đến hàng ngàn khách. Nhà cung cấp dịch vụ có thể nâng cấp hoặc giảm bớt năng lực phục vụ của hệ thống theo nhu cầu thực tế, giúp nâng cao hiệu quả kinh doanh, tăng tính cạnh tranh của doanh nghiệp.

1.6.4 Mở rộng nhanh vùng phủ sóng

Hệ thống 802.16a cho phép phủ sóng đến những vùng hiểm trở, thiếu cáp trước đây. Do tuyến cáp DSL chỉ có thể đáp ứng trong bán kính 4,8km tính từ trạm điều phối trung tâm nên còn nhiều vùng địa hình hiểm trở mà nhà cung cấp không thể với tới. Thống kê gần đây cho thấy có hơn 2.500 nhà cung cấp dịch vụ không dây (Wireless ISP) địa phương hoạt động hiệu quả trên 6.000 thị trường tại Mỹ. Không chỉ triển khai dịch vụ dữ liệu tốc độ cao, hệ thống còn cho phép triển khai dịch vụ thoại cho những người dùng ở vùng sâu vùng xa.

1.6.5 Roaming dich vụ

Với công nghệ IEEE 802.16e mở rộng từ 802.16a, trong tương lai người dùng sẽ được hỗ trợ dịch vụ roaming tương tự điện thoại di động, tự động chuyển kết nối đến nhà cung cấp dịch vụ Internet không dây địa phương ngay khi ra ngoài vùng phủ sóng của mạng gia đình, công ty. Dự kiến đến 2006, công nghệ Wimax sẽ được tích hợp vào máy tính xách tay, PDA như Wi-Fi hiện nay và từng bước hình thành nên những vùng dịch vụ không dây băng rộng mang tên "MetroZones"

Chương II

KIẾN TRÚC BẢO MẬT TRONG MẠNG WIMAX

Trong môi trường Internet, hệ thống Wimax phải đối mặt với nguy cơ bị đe dọa tấn công bởi nhiều phương thức khác nhau. Hệ thống Wimax có thể bị tấn công ở lớp vật lý hay lớp MAC. Các phương thức tấn công tại lớp vật lý có thể là Jamming hay Scrambling.

+ Jamming là phương thức tấn công sử dụng một nguồn phát tín hiệu có công suất lớn để gây nhiễu trạm BS.

+ Scrambling là phương thức tấn công nhằm mục đích chiếm dụng băng thông của SS yêu cầu từ các BS [E12].

Trong mô hình phân lớp, lớp con bảo mật nằm trên lớp vật lý, do đó lớp vật lý không được bảo vệ.

Thực thi bảo mật cho hệ thống Wimax nhằm bảo vệ tính riêng tư cho các SS để chống lại các nguy cơ đe dọa tấn công và ngăn chặn các truy cập trái phép từ bên ngoài. Cơ chế bảo mật được thực thi trên cơ sở mã hóa các kết nối giữa BS và SS, gồm một số thủ tục cơ bản như xác thực, điều khiển truy cập, mã hóa thông báo, quản lí khóa …

2.1 KIẾN TRÚC BẢO MẬT

Lớp MAC có thể bị tấn công trong quá trình xác thực hoặc trong quá trình truyền dữ liệu trên các kết nối. Trong quá trình xác thực, BS và SS sử dụng các thông báo quản trị để trao đổi thông tin. Do đó, các thông báo này có thể bị nghe trộm hoặc bị thay đổi nội dung nếu như không được mã hóa. Trong quá trình truyền dữ liệu, luồng lưu lượng cũng có thể bị nghe trộm hoặc bị mất.

Hình 2.1. Mô hình kiến trúc bảo mật chuẩn IEEE 802.16 [E8]

Một SS trước khi truyền dữ liệu phải thực hiện xác thực với BS để được cấp quyền truy nhập hệ thống. Luồng dữ liệu trước khi được truyền từ BS đến SS cần được xác thực. Sau khi được cấp quyền, dữ liệu trong phần payload của MAC PDU sẽ được mã hóa trước khi truyền. Tại máy thu cũng thực hiện xác thực dữ liệu, trao đổi các thông tin cần thiết để giải mã dữ liệu. Tất cả các quá trình này được thực hiện tại lớp con bảo mật.

2.1.1 Tập hợp bảo mật

Tập hợp bảo mật - Security Association (SA) là khái niệm gồm một tập hợp các thông tin bảo mật cho các kết nối gồm các khóa và các thuật toán mã hóa. SA được chia sẻ giữa một BS và các SS nhằm bảo vệ quá trình liên lạc giữa BS và SS. Mỗi một SA chứa một danh sách các bộ mã hóa (các thuật toán mã hóa được lựa chọn), các khóa mã hóa lưu lượng TEK (Traffic Encryption Key) và các vector khởi tạo (initialization vector) và được tham chiếu bởi một giá trị định danh SAID (SA Identifier) 16 bit.

Có ba loại SA: primary SA, static SA và dynamic SA.

- Mỗi SS có một primary SA, được thiết lập tại thời điểm khởi tạo kết nối. - Static SA được BS tạo trong quá trình khởi tạo SS, BS có thể cung cấp nhiều dịch vụ, mỗi dịch vụ tương ứng với một static SA.

- Dynamic SA được tạo ra khi một luồng lưu lượng mới xuất hiện và bị hủy bỏ khi luồng lưu lượng bị hủy.

Static SA và Dynamic SA có thể chia sẻ cho nhiều SS.

Kết nối quản trị basic và primary không được ánh xạ sang các SA tương ứng, nhưng các thông báo truyền trên hai kết nối này có thể được bảo vệ. Mỗi một kết nối quản trị secondary được ánh xạ thành một Primary SA. Tất cả các kết nối Transport luôn được ánh xạ thành các SA có sẵn, riêng kết nối multicast Transport được ánh xạ thành static SA hay dynamic SA bất kỳ.

2.1.2 Giao thức quản lí khóa PKM

Chuẩn IEEE 802.16 sử dụng giao thức PKM để thiết lập liên kết bảo mật giữa BS và SS. SS sử dụng giao thức PKM để yêu cầu BS chứng thực và một khóa thực để trao đổi. Ngoài ra, giao thức PKM còn hỗ trợ SS thực hiện yêu cầu chứng thực lại (reauthorization) và cập nhật khóa. PKM sử dụng chứng thực X.509, thuật toán mã hóa public key RSA, và các thuật toán mã hóa mạnh để thực hiện trao đổi khóa giữa BS và SS.

Giao thức PKM sử dụng mô hình client-server. Trạm SS đóng vai trò là các client gửi yêu cầu chứng thực đến BS, đóng vai trò là server có trách nhiệm đáp ứng yêu cầu mà các client gửi đến. Mô hình này bảo đảm mỗi một SS chỉ có duy nhất một khóa thực đã được chứng thực. Các thông báo quản trị lớp MAC (PKM-REQ và PKM-RES) được sử dụng trong giao thức PKM.

2.2 QUY TRÌNH BẢO MẬT

Hình 2.2. Quy trình bảo mật

* Xác thực (Authentication)

Trạm SS thực hiện xác thực với BS bằng cách gửi thông báo yêu cầu xác thực (chứng thực X.509). BS thực hiện xác thực SS và thương lượng khả năng bảo mật với SS (các thuật toán mã hóa mà SS hỗ trợ), sau khi thương lượng, một SA được tạo và được tham chiếu bởi giá trị SAID. Tiếp đó, SS gửi thông báo Authorization Request yêu cầu cấp quyền truy cập. BS sẽ kiểm tra và gửi lại thông báo Authorization Reply chứa khóa AK (Authentication Key) cho SS được sử dụng trong quá trình trao đổi khóa. Quá trình xác thực hoàn tất khi cả BS và SS đều giữ khóa AK.

* Trao đổi khóa dữ liệu (Data Key Exchange)

Trạm SS gửi thông báo TEK Key Request yêu cầu BS cấp cho một khóa mã hóa lưu lượng TEK (Traffic Encryption Key), được sử dụng trong quá trình mã hóa dữ liệu. BS sau khi kiểm tra lại các thông tin được SS gửi đến, nếu các thông tin hợp lệ, BS sẽ tạo ngẫu nhiên một khóa TEK và gửi lại cho SS thông báo TEK Key Respond chứa khóa TEK. Quá trình trao đổi khóa dữ liệu hoàn tất khi cả BS và SS đều giữ khóa TEK.

* Mã hóa dữ liệu

Sau khi quá trình trao đổi khóa dữ liệu đã thực hiện xong, SS tiến hành mã hóa dữ liệu trước khi truyền. Quá trình mã hóa chỉ được thực hiện cho phần payload của

MAC PDU. Các thông báo quản trị không được mã hóa.

2.2.1 Xác thực

Quá trình xác thực được trình bày trên hình

Hình 2.3 Quá trình xác thực SS với BS

Đầu tiên, SS gửi thông báo Authentication Information chứa chứng thực X.509 (RFC 3280) của nhà sản xuất SS [E12]. Chứng thực này gồm một public key và một địa chỉ MAC của SS. Tiếp đó, SS gửi thông báo Authorization Request cho BS, thông báo này yêu cầu BS cấp cho một khóa AK và các giá trị SAID định danh các Static SA tương ứng với các dịch vụ mà SS đã đăng kí. Thông báo Authorization Request bao gồm:

- Một chứng thực X.509 của nhà sản xuất SS.

- Một bộ mã hóa (Cryptographic Suite) mà SS hỗ trợ. Mỗi một đơn vị trong bộ mã hóa bao gồm một cặp thuật toán mã hóa và xác thực gói dữ liệu mà SS hỗ trợ.

- Một giá trị SAID tương ứng với Primary SA.

Sau khi nhận được thông báo Authorization Request, BS tiến hành xác thực SS dựa vào các thông tin trong thông báo Authorization Request. Sau khi đã định danh được SS là hợp pháp và xác định được các thuật toán mã hóa và các giao thức được SS hỗ trợ, BS sẽ sử dụng public key của SS để tạo khóa AK (128 bit). Sau đó BS gửi thông báo Authorization Reply cho SS, thông báo Authorization Reply bao gồm:

- Một khóa AK.

- Một số tuần tự khóa (0-15) để phân biệt các khóa AK với nhau.

- Một giá trị thời gian sống (life-time) của khóa AK. Giá trị này trong khoảng 1-70 ngày, mặc định là 7 ngày.

- Một giá trị SAID tương ứng với Primary SA và một hoặc nhiều giá trị SAID định danh các Static SA tương ứng với các dịch vụ SS đã đăng kí.

Sau một thời gian nhất định, SS thực hiện quá trình yêu cầu cấp quyền lại (Reauthorization) để cập nhật khóa AK. Quá trình Reauthorization tương tự như quá trình Authorization ngoại trừ việc SS không gửi thông báo Authentication Information.

Mỗi khóa AK có một thời gian sống nhất định. Vì cả BS và SS đều hỗ trợ đồng thời hai khóa AK tồn tại cùng một lúc nên thời gian sống này có thể chồng lên nhau giữa các AK nhằm tránh tình trạng các dịch vụ bị tạm ngừng đột ngột do giá trị life- time của khóa hết hạn.

Vì BS xác thực SS bằng chứng thực X.509, do đó có thể tránh được nguy cơ bị tấn công từ các SS giả danh.

2.2.2 Trao đổi khóa dữ liệu

Quá trình trao đổi khóa dữ liệu được mô tả bên dưới [E8]

Quá trình trao đổi khóa được thực hiện tương ứng với từng dịch vụ mà SS đã đăng kí trong quá trình thiết lập kết nối. Mỗi dịch vụ tương ứng với một Static SA và được định danh bởi một giá trị SAID tương ứng.

Sau khi đã nhận được thông báo Authorization Reply, SS sử dụng giá trị khóa AK để tạo hai khóa gồm: khóa mã hóa khóa (KEK – Key Encryption Key) 128 bit được sử dụng để mã hóa khóa TEK trong suốt quá trình truyền và khóa xác thực thông báo (HMAC - Hash function-based Message Authentication Code) 160 bit. Tiếp đó SS gửi thông báo TEK Request để yêu cầu BS cấp cho một khóa mã hóa lưu lượng TEK, khóa này được dùng để mã hóa dữ liệu. Thông báo TEK Request gồm:

- Số tuần tự khóa AK được cấp trong quá trình xác thực.

- Một giá trị SAID tương ứng với một Static SA của một dịch vụ cụ thể mà SS đã đăng kí.

- Một giá trị HMAC-SHA1.

Sau khi nhận thông báo TEK Key Request từ SS, BS sử dụng thông tin trong thông báo TEK Key Request để kiểm tra giá trị khóa AK, nếu phù hợp sẽ tiến hành tạo ngẫu nhiên một khóa TEK (128 bit). Khóa TEK được tạo bởi các phương thức Triple-DES (sử dụng 128 bit KEK), hoặc phương thức RSA (sử dụng public key của SS), hoặc phương thức AES (sử dụng 128 bit KEK). Các phương thức mã hóa này được chỉ thị bởi giá trị của một đơn vị trong bộ mã hóa. Sau đó, BS gửi thông báo TEK Key Reply cho SS, thông báo TEK Key Request gồm:

- Số tuần tự khóa AK được cấp trong quá trình xác thực.

- Một giá trị SAID tương ứng với một Static SA của một dịch vụ cụ thể mà SS đã đăng kí.

- Một khóa TEK đã mã hóa.

- Một giá trị thời gian sống (life-time) của khóa TEK.

- Giá trị CBC-IV (CBC – Inittialization Vector) để mã hóa dữ liệu. - Một giá trị HMAC-SHA1 để xác thực các thông báo.

Quá trình trao đổi khóa dữ liệu hoàn tất khi cả BS và SS đều giữ khóa TEK.

2.2.3 Mã hóa dữ liệu

Sau khi thực hiện xong quá trình trao đổi khóa, phần dữ liệu payload sẽ được mã hóa trước khi truyền sử dụng khóa TEK. Riêng các thông báo quản trị thì không

được mã hóa.

Hình 2.5 Định dạng payload trước và sau khi mã hóa

Khối dữ liệu payload sau khi mã hóa được bổ sung hai trường: trường PN (Packet Number) có độ dài 4 byte biểu thị số tuần tự gói sau khi mã hóa, được tăng lên một đơn vị mỗi khi một MAC PDU được truyền. Trường Ciphertext ICV (Ciphertext Integrity Check Value) mô tả giá trị kiểm tra tính toàn vẹn phần payload đã được mã hóa.

Chuẩn IEEE 802.16 hỗ trợ hai thuật toán mã hóa dữ liệu: - Thuật toán DES (Data Encryption Standard).

- Thuật toán AES (Advanced Encryption Standard).

2.3 HẠN CHẾ CỦA KIẾN TRÚC BẢO MẬT

Kiến trúc bảo mật chuẩn IEEE 802.16 sử dụng cơ chế xác thực dựa trên chứng thực X.509 và các cơ chế mã hóa khóa hiệu quả, nhưng cũng có một số hạn chế sau: - Không hỗ trợ cơ chế xác thực BS: Cơ chế xác thực chỉ thực hiện theo một chiều từ SS đến BS. Không có cơ chế để các SS có thể xác thực BS mà nó kết nối tới. Điều này có thể dẫn đến nguy cơ xuất hiện một BS giả danh một BS hợp pháp gây nên sự nhầm lẫn cho các SS khi thực hiện kết nối đến BS. Các phương thức tấn công theo kiểu giả danh này lại phụ thuộc vào kiểu mạng. Ví dụ, đối với mạng WiFi 802.11, sử dụng phương thức đa truy nhập cảm nhận sóng mang, một kẻ tấn công (acttacker) có được ID của AP (Access Point) và tạo một thông báo với ID hợp pháp, acttacker sẽ chờ cho đến khi môi trường mạng nhàn rỗi và khi đó truyền thông báo, điều này có thể gây ra sự nhầm lẫn. Tuy nhiên đối với mạng Wimax,

phương thức trên lại khó thực hiện do hệ thống sử dụng phương thức đa truy cập phân chia theo thời gian, BS giả danh cũng có thể tạo các thông báo với định danh của BS thực. BS giả danh phải chờ cho đến khe thời gian được cấp phát cho BS và truyền cùng thời điểm với BS thực, tuy nhiên nó phải điều chỉnh cường độ của tín hiệu truyền phải lớn hơn cường độ của tín hiệu truyền của BS thực. Các trạm SS sẽ nhận và giải mã tín hiệu được gửi từ một BS giả danh thay cho BS thực.

Do đó, có thể bổ sung vào một chứng thực BS được sử dụng để một SS xác định chính xác BS mà nó sẽ kết nối tới.

- Không hỗ trợ cơ chế mã hóa các thông báo quản trị: Các thông báo quản trị không được mã hóa, nhưng được xác thực. Cơ chế xác thực thông báo quản trị được sử dụng là HMAC (Hashed Message Authentication Code) có nhiều nhược điểm, do đó nguy cơ bị mất thông tin từ các thông báo bị tấn công sẽ ảnh hưởng đến hoạt động liên lạc giữa các trạm với nhau.

- Không hỗ trợ một cơ chế hiệu quả chống lại hình thức tấn công từ chối dịch vụ DoS (Denial of Service): Các attacker có thể sử dụng SS thực hiện gửi yêu cầu xác thực đến BS với số lượng nhiều và liên tục, làm cho BS mất khả năng xử lí.

Chương III

MÃ HÓA BẢO MẬT TRONG MẠNG WIMAX

Trong các mạng vô tuyến, bảo mật luôn là một vấn đề làm đau đầu các nhà cung cấp. Mạng Wimax tuy đã khá hoàn thiện song vẫn còn đó những điểm yếu trong vấn đề bảo mật. Cũng giống như các mạng không dây khác, nhược điểm lớn nhất của Wimax là tính bảo mật do sự chia sẻ môi trường truyền dẫn và những lỗ hổng tại cơ sở hạ tầng vật lý. Mặc dù vấn đề bảo mật được coi là một trong những vấn đề chính trong quá trình xây dựng giao thức mạng của IEEE nhưng kỹ thuật

Một phần của tài liệu vấn đề bảo mật mạng wimax và ứng dụng (Trang 39 - 81)

Tải bản đầy đủ (PDF)

(81 trang)