Task Response time
Identifying the location of the considered objects 25 fps
Recognizing objects 30 fps
All 22~23 fps
Bảng 5. 6 ĐÁNH GIÁ KẾT QUẢ PHÁT HIỆN BIỂN BÁO TRONG CÁC LAANFN CHẠY
THỬU NGHIỆM KHÁC NHAU
Dataset FPR (%) FNR (%) ACC (%) 1 0.69 0.025 99.65 2 0.99 0.012 99.81 3 0.12 0.023 99.73 4 0.55 0.017 99.87 5 0.57 0.019 99.84 Average 0.58 0.019 99.78
65
CHƯƠNG 6: KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN
6.1. KẾT LUẬN
Trong đề tài này nhóm đề xuất một hệ thống thống nhất có thể phát hiện biển báo giao thông, làn đường và vật cản trên đường từ đó cho phép xe có thể tự lái. Để có thể phát hiện làn đường, nhóm đề xuất kết hợp các phương pháp học sâu và phương pháp xử lý ảnh truyền thống để vừa giảm thời gian và công sức thu thập dữ liệu trong khi vẫn giữ được hiệu suất cao. Những làn đường được phát hiện sau đó được sử dụng để xác định đoạn đường có thể đi và phát hiện vật cản trên đoạn đường đó bằng thơng tin từ ảnh depth. Bên cạnh đó, nhóm cũng đề xuất một model nhẹ để phát hiện biển báo giao thông và xác định khoảng cách đến mơ hình. Kết quả và đánh giá cho thấy hệ thống của nhóm hoạt động tốt trong mơi trường thử nghiệm với xe mơ hình.
6.2. HƯỚNG PHÁT TRIỂN
Trong tương lại, nhóm sẽ cố gắng thử nghiệm các chức năng đã được đánh giá vào hệ thống xe thật và quan tâm đến những thách thức thực tế mới như thời tiết (ảnh hưởng trực tiếp đến tầm nhìn của camera), thời gian đáp ứng khi tốc độ của xe ở mức cao, …. Bên cạnh đó, nhóm đã thử nghiệm một số nhiệm vụ mới cho hệ thống như phát hiện và cảnh báo ổ gà, vết nứt trên đường, vật cản động phía trước. Để tích hợp thêm các nhiệm vụ trên vào hệ thống cũng như tăng độ chính xác, tốc độ xử lý đồng thời giảm thời gian huấn luyện mơ hình, nhóm đang nghiên cứu áp dụng multi-task learning và transfer learning trong thời gian tới.
66
TÀI LIỆU THAM KHẢO
[1] Jamel Baili, Mehrez Marzougui , Ameur Sboui , Samer Lahouar , Mounir Hergli , J.Subash Chandra Bose, Kamel Besbes, "Lane Departure Detection Using Image Processing Techniques," in 2017 2nd International Conference on Anti-Cyber
Crimes (ICACC), 2017.
[2] Jihun Kim, Minho Lee, "Robust Lane Detection Based On Convolutional Neural Network and Random Sample Consensus," in Neural Information Processing, 21st International Conference, 2014, pp. 454-461.
[3] Ruyi Jiang, Mutsuhiro Terauchi, Reinhard Klette, Shigang Wang, Tobi Vaudrey, "Low-Level Image Processing for Lane Detection and Tracking," in ArtsIT, 2009. [4] Marc Revilloud , Dominique Gruyer, Evangeline Pollard, "An improved approach
for robust road marking detection and tracking applied to multi-lane estimation," in
2013 IEEE Intelligent Vehicles Symposium (IV), 2013.
[5] K. Zhaom, M. Meuter, C. Nunn, D. Muller, S. Muller-Schneiders, and J. Pauli, "A novel multi-lane detection and tracking system," in A novel multi-lane detection and
tracking system,”, 2012.
[6] D. Neven, B-D.Brabandere, S. Georgoulis, M. Proesmans and L-V. Gool, "Towards End-to-End Lane Detection: an Instance Segmentation Approach," in IEEE
67
[7] Thanh-Phat Nguyen, Vu-Hoang Tran, Ching-Chung Huang, "Lane Detection and Tracking Based on Fully Convolutional Networks and Probabilistic Graphical Models," in IEEE, 2018.
[8] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, "SSD: Single Shot MultiBox Detector," in Computer Vision – ECCV 2016, 14th European Conference, 2016, pp. 21-37.
[9] B. Anh, "Công nghệ xe tự hành của Việt Nam: Còn nhiều thách thức," [Online]. Available: https://congluan.vn/cong-nghe-xe-tu-hanh-cua-viet-nam-con-nhieu- thach-thuc-post39614.html.
[10] Ashanira Mat Deris, Azlan Mohd Zain, Roselina Sallehuddin, "Overview of Support Vector Machine in Modeling Machining Performances," in Procedia
Engineering, 2011.
[11] Chenchen Ji, Mingfeng Lu, Jinmin Wu, Zhen Guo, "Faster region-based
convolutional neural network method for estimating parameters from Newton's rings," in Modeling Aspects in Optical Metrology VII, 2019.
[12] Canan Tastimur, Mehmet Karaköse, Yavuz Celik, Erhan Akin , "Image processing based traffic sign detection and recognition with fuzzy integralv," in 2016
International Conference on Systems, Signals and Image Processing (IWSSIP),
2016.
[13] Karsten Behrendt and Jonas Witt, "Deep Learning Lane Marker Segmentation From Automatically Generated Labels," in IEEE/RSJ International Conference on
68
[14] Yingmao Li, Asif Iqbal, Nicholas R. Gans, "Multiple lane boundary detection using a combination of low-level image features," in IEEE 17th International Conference, 2014.
[15] V. Shrimali, "learnopencv," [Online]. Available:
https://www.learnopencv.com/pytorch-for-beginners-basics/. [16] "Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Digital_image_processing. [17] "Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Hough_transform#:~:text=The%20Hough%20transfor m%20is%20a,shapes%20by%20a%20voting%20procedure..
[18] N. H. Tiệp, "Giới thiệu machine learning," [Online]. Available: https://machinelearningcoban.com/2016/12/26/introduce/.
[19] N. H. Tiệp, "Bài 19: Support vector machine," [Online]. Available: https://machinelearningcoban.com/2017/04/09/smv/.
[20] S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way," [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide- to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
[21] "Missinglink.ai," [Online]. Available: https://missinglink.ai/guides/computer- vision/image-segmentation-deep-learning-methods-applications/.
69
[22] J. Hui, "SSD object detection: Single Shot MultiBox Detector for real-time processing," [Online]. Available: https://medium.com/@jonathan_hui/ssd-object- detection-single-shot-multibox-detector-for-real-time-processing-9bd8deac0e06. [23] R. Girshick, "Fast R-CNN," in IEEE/CVF, 2015.
[24] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," in IEEE/CVF, 2017.
[25] Songtao Liu, di Huang, Yunhong Wang, "Receptive Field Block Net for Accurate and Fast Object Detection," 2017.
[26] N. H. Tiệp, "Gradient Descent," [Online]. Available:
https://machinelearningcoban.com/2017/01/16/gradientdescent2/.
[27] J. Brownlee, "What is the Adam optimization algorithm?," [Online]. Available: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep- learning.
[28] "Định nghĩa về PID," [Online]. Available: https://prosensor.vn/pid-la-gi/. [29] Taha Emara, Hossam E. Abd El Munim, Hazem M. Abbas, "LiteSeg: A Novel
Lightweight ConvNet for Semantic Segmentation," in DICTA Confence, 2019. [30] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, "DeepLab:
70
and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 834-848, 2017.
[31] "Polynomial Curve Fitting," [Online]. Available: https://www.centerspace.net/polynomial-curve-fitting.
[32] Linzai, "Github.com," [Online]. Available: https://github.com/Linzaer/Ultra-Light- Fast-Generic-Face-Detector-1MB.
[33] N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," in
IEEE, 2005.
[34] Laurens van der Maaten, Geoffrey Hinton, "Viualizing data using t-SNE," Journal
of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
[35] "CamVid," [Online]. Available: https://pgram.com/dataset/camvid/.
[36] J. Brownlee, "Gentle Introduction to the Adam Optimization Algorithm for Deep Learning," 2017. [Online]. Available: https://machinelearningmastery.com/adam- optimization-algorithm-for-deep-learning/.
[37] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, Joseph E. Gonzalez, "SkipNet: Learning Dynamic Routing in Convolutional Networks," in CVPR, 2017.
[38] "Feed the Troll 0.1.1 documentation," [Online]. Available: http://docs.ros.org/. [39] M. Haloi and D. B. Jayagopi, "A robust lane detection and departure warning
71
[40] Soomok Lee, Seong-Woo Kim, Seung-Woo Seo, "Accurate ego-lane recognition utilizing multiple road characteristics in a Bayesian network framework," in IEEE
Intelligent Vehicles Symposium, 2015.
[41] M. Aly, "Real time detection of lane markers in urban streets," in IEEE Intelligent