3.3.5.1Đặc tính định hướng của Anten.
Việc lựa chọn anten ảnh hưởng lớn tới công suất và độ bao phủ của các hệ thống không dây cố định. Sự lựa chọn này được dựa trên tần số hiệu dụng (efficitent frequency), dải thông và các đặc tính định hướng của anten. Đối với người thiết kế hệ thống, các đặc tính quan trọng nhất của anten là mô hình phát xạ (radiation pattern), đặc tính định hướng (directivity), và hệ số tăng ích (gain). Ngoài ra, dải thông (bandwidth) và độ phân cực (polarization) của anten cũng cần được xem xét khi thiết kế hệ thống.
3.3.5.2 Vùng phủ sóng của anten trạm gốc
Một mạng điểm – đa điểm (PMP) bao gồm nhiều vùng phủ sóng trạm gốc, mỗi vùng kết nối tới nhiều CPE. Trong trạm gốc, mỗi anten khu vực phục vụ cho một vùng phủ sóng theo một hướng nhất định nào đó.
Anten khu vực (sector antens): là anten có tính định hướng với góc mở của anten thay đổi từ 150 đến 3600. Góc mở của anten phụ thuộc vào cả hai yếu tố: vùng dịch vụ và dung lượng yêu cầu của hệ thống. Vùng phủ sóng của Sector Antenna được chỉ ra trong hình 3.8:
Hình 3.8: Vùng phủ sóng của Sector Antenna
Anten đẳng hướng: Trường sóng bức xạ của Anten ra mọi hướng là như nhau.
Một trạm gốc chỉ sử dụng một anten vô hướng omni (góc mở 3600) (omnidirectional anten) sẽ có dung lượng chỉ bằng 1/4 hệ thống sử dụng 4 anten khu vực, mỗi anten có góc mở 900. Hình 3.9 thể hiện vùng phủ sóng của một Omni Antenna.
Hình 3.9: Vùng phủ sóng của Omni Antenna
Loại anten được dùng trong anten khu vực phụ thuộc vào băng tần số được sử dụng. Tại dải tần nhỏ hơn 10 GHz, anten khu vực thường sử dụng thành mạng anten lưỡng cực hoặc khe, trong cả hai loại cấu hình tuyến tính hay hai chiều.
3.3.5.3 Anten của CPE
Loại anten của CPE phụ thuộc vào khả năng truyền NLOS của hệ thống. Trong mạng FBWA truyền trong tầm nhìn thẳng LOS, anten của CPE có tính định hướng cao và được đặt ngoài trời bởi một kỹ thuật viên chuyên nghiệp (vì nó đòi hỏi công đoạn tinh chỉnh hướng tính của anten tương đối phúc tạp mà không phải kỹ thuật viên nào cũng có thể làm được). Trong hệ thống NLOS, góc mở của các anten của CPE thường lớn, và trong trường hợp này người ta thường dùng anten Omni-directional. Hình 3.10 và 3.11 là hai loại anten khác nhau của CPE.
Hình 3.10: CPE với Anten tích hợp bên trong
Hình 3.11: CPE với Anten ngoài
3.3.5.4 Các công nghệ Anten nâng cao
Hệ thống Anten thông minh có liên quan tới loại công nghệ Anten được thiết kế để tăng cường độ tín hiệu nhận được trong mạng truy cập không dây. Mục đích là để làm tăng CINR (carrier-to-interference plus noise ratio). Sử dụng công nghệ Anten thông minh có thể vừa làm tăng cường độ tín hiệu nhận được và làm giảm mức độ nhiễu để tăng phần lớn công dụng trong một mạng giao tiếp di động.
Tạo chùm tia (Beam-Forming)
Việc truyền phát các tín hiệu đi từ nhiều ăngten ở các pha cân bằng cụ thể có thể được sử dụng để tạo chùm tia hẹp hơn. Hiện tượng này gọi là beam forming.
Beam-forming mang đến các cải tiến đáng kể trong ngân sách đường kết nối theo cả 2 hướng uplink và downlink bằng cách tăng độ lợi của Anten, ngoài ra để làm giảm sự suy giảm cường độ tín hiệu do tác động bởi nhiễu. Beam-forming yêu cầu thông tin về vị trí của thuê bao đặc biệt là đối với thuê bao đang di chuyển với tốc độ lớn. Tuy nhiên, theo số liệu thống kê mạng cellular, đa số thuê bao hoặc không chuyển động, hoặc chuyển động với tốc độ chậm, vì thế beam-forming mang đến các lợi ích quan trọng cho hầu hết các mô hình sử dụng.
Công nghệ tạo chùm tia đơn được thể hiện trong hình 3.12:
Hình 3.12: Công nghệ tạo chùm tia đơn
Ví dụ, cấu hình beam-forming gồm 4 ăngten có thể hỗ trợ tăng cường tín hiệu có độ lợi 6dB trong khi vẫn cải tiến được tín hiệu truyền phát bị suy giảm. Kết quả là Beam-forming đem lại khả năng mở rộng hơn, thông lượng cao hơn và là tăng khả năng phủ sóng trong nhà (indoor). Với số lượng trạm gốc ít hơn để đạt được một dung lượng cụ thể trong môt hệ thống, beam-forming có thể tiết kiệm 50% chi phí đầu tư vốn và 30% chi phí vận hành.
Công nghệ Anten thông minh Beam forming được hợp nhất trong thông số kỹ thuật WiMAX di động để tăng dung lượng hệ thống và tính năng trong các mạng di động băng thông rộng.
Mã hoá không gian-thời gian
Mã hoá không gian- thời gian (STC - Space-time coding) là kỹ thuật thực hiện phân tập truyền phát (transmission diversity). Wimax di động sử dụng kỹ thuật phân tập truyền phát trên đường downlink để phân tập từng phần nhằm tăng cường chất lượng tín hiệu truyền đến một thuê bao cụ thể nằm tại bất cứ điểm nào trong dải chùm tia anten phát ra. Mặc dù cung cấp độ lợi tín hiệu thấp hơn beam-forming nhưng đối với người sử dụng di động thì sự phân tập truyền phát càng cần thiết hơn bởi vì nó không yêu cầu các kiến thức hiểu biết trước về đặc tính đường dẫn của kênh tần số cụ thể của một thuê bao. Công nghệ STC, được biết đến như Alamouti Code, được công bố vào năm 1998 và nó hợp nhất với chuẩn WiMAX.
Hình 3.13: Mã hóa không gian – thời gian
Space time BS ánh xạ và đánh giá kênh MISO (2 anten phía BS, 1 anten phía SU) tại phía phát tạo phân tập trên đường truyền, ổn định hệ thống và giảm fading từ 5 – 10 dB tùy thuộc vào môi trường truyền sóng.
Ghép kênh không gian (Spactial Multiplexing)
Công nghệ này hỗ trợ ghép kênh không gian để tận dụng tốc độ đỉnh cao hơn và tăng thông lượng. Nhờ ghép kênh không gian, nhiều luồng sẽ được truyền trên hệ thống nhiều anten. Nếu phía thu cũng có hệ thống nhiều anten, nó có thể phân tách các luồng khác nhau để đạt được thông lượng cao hơn so với các hệ thống đơn anten. Một trong những công nghệ đó là công nghệ MIMO (Multi In Multi Out).
Công nghệ đa cổng vào ra (MIMO) miêu tả các hệ thống sử dụng nhiều hơn 1 radio và hệ thống Anten tại một điểm cuối của đường kết nối không dây. Trước đây, chi phí để kết hợp nhiều anten và các radio trong một đầu cuối khách hàng là rất cao. Các cải tiến gần đây trong công nghệ tích hợp và triển khai quy mô nhỏ cho hệ thống vô tuyến làm tăng tính khả thi và chi phí hiệu quả. Phối hợp nhiều tín hiệu nhận được sẽ đạt được các lợi ích tức thời khi tăng cường độ tín hiệu nhận được, tuy nhiên công nghệ MIMO cũng cho phép truyền phát các luồng dữ liệu song song để đạt được thông lượng lớn hơn.
Trong hệ thống Điểm-Đa điểm sử dụng MIMO, mỗi Anten trạm gốc phát đi luồng dữ liệu khác nhau và mỗi thiết bị đầu cuối khách hàng nhận nhiều thành phần của tín hiệu phát khác nhau với mỗi Anten thiết bị thuê bao khách hàng được minh hoạ trong hình 3.14 dưới đây.
Hình 3.14: Hệ thống Anten MIMO
Bằng cách sử dụng thuật toán thích hợp, thiết bị đầu cuối khách hàng có thể phân chia và giải mã các luồng dữ liệu nhận được trong cùng một lúc.
Ví dụ, trong một MIMO 2x2 (tức là gồm 2 phần tử phát và 2 phần tử thu), với hệ thống Điểm - Điểm 2 phân cực, các tần số cấp cho carrier có thể được sử dụng 2 lần , làm tăng tốc độ truyền dữ liệu gấp 2 lần, SM đã tăng tốc độ lên gấp đôi nhờ sử dụng 2 luồng số liệu. Ở đường lên (UL), mỗi người dùng chỉ có một anten phát, 2 người dùng có thể truyền cùng với nhau trong cùng một khe thời gian giống như hai
luồng được ghép kênh không gian từ hai anten của cùng một người dùng. Quá trình như vậy gọi là UL hợp tác SM. Nhiều anten phát MS phát cùng 1 lúc tạo thành hệ thống nhiều anten ảo,làm tăng dung lượng mạng.
Bảng 3.2 dưới đây tổng kết tốc độ dữ liệu đỉnh lý thuyết với các tỉ lệ DL/UL khác nhau giả định băng thông kênh la 10MHz, độ rộng khung là 5ms gồm 44 biểu trưng dữ liệu OFDM (trong tổng số 48 biểu trưng OFDM) và kênh con hoá kiểu PUSC.
Bảng 3.2 Tốc độ dữ liệu cho các cấu hình SIMO/MIMO
Tỷ số DL/UL 1:0 3:1 2:1 3:2 1:1 0:1 Tỷ lệ tối đa user (Mbps) SIMO (1 x 2) DL 31.68 23.04 20.16 18.72 15.84 0 UL 0 4.03 5.04 6.05 7.06 17.11 MIMO (2 x 2) DL 63.36 46.08 40.32 37.44 31.68 0 UL 0 4.03 5.04 6.05 7.06 16.11 Tỷ lệ tối đa sector (Mbps) SIMO (1 x 2) DL 31.68 23.04 20.16 18.72 15.84 0 UL 0 4.03 5.04 6.05 7.06 14.11 MIMO (2 x 2) DL 63.36 46.08 40.32 37.44 31.6 0 UL 0 8.06 10.08 12.10 14.12 28.22
Tốc độ dữ liệu đỉnh tối đa hướng xuống (DL) là 63.36 Mbps khi tất cả biểu trưng dữ liệu chỉ dành cho hướng xuống (DL). Với đường lên UL hợp tác SM, tốc độ dữ liệu đỉnh sector UL được nhân đôi trong khi tốc độ dữ liệu đỉnh người dùng không đổi. Tốc độ dữ liệu đỉnh người dùng hướng lên và tốc độ dữ liệu đỉnh sector lần lượt là 14.11 Mbps và 28.22 Mbps khi tất cả các biểu trưng dữ liệu chỉ dành cho hướng lên (UL). Bằng cách áp dụng các tỉ lệ DL/UL khác nhau, băng thông có thể được điều chỉnh giữa DL và UL để cung cấp các mẫu lưu lượng khác nhau. Chuẩn Wimax hỗ trợ tỉ số DL/UL trong phạm vi từ 3:1 đến 1:1 để cung cấp các chuẩn lưu lượng khác nhau.
Chuẩn Wimax di động bao gồm công nghệ mã hoá MIMO cho tới 4 Anten tại mỗi điểm cuối đường kết nối, (4x4 MIMO) được thể hiện trong hình 3.15 dưới đây.
Hình 3.15: Hệ thống Anten MIMO 4x4
Lựa chọn MIMO thích nghi
WiMAX di động hỗ trợ khả năng chuyển đổi lựa chọn thích nghi để khai thác tối đa lợi ích của các công nghệ anten thông minh trong các tình trạng kênh truyền khác nhau. Ví dụ, SM cải thiện thông lượng đỉnh. Mặc dù, điều kiện kênh không tốt, tỉ lệ lỗi gói tin PER có thể cao và do vậy vùng phủ sóng với tỉ lệ PER yêu cầu sẽ bị hạn chế. Còn STC theo 1 cách khác sẽ cung cấp khả năng phủ sóng rộng bất chấp tình trạng kênh truyền nhưng lại không cải thiện được tốc độ dữ liệu gói.
WiMAX di động còn hỗ trợ lựa chọn MIMO thích nghi (Adaptive MIMO Switching – AMS) giữa các chế độ đa MIMO để sử dụng tối đa hiệu suất phổ mà vùng phủ sóng không bị giảm. Hình 3.16 chỉ ra cấu trúc hỗ trợ các đặc tính anten thông minh.
3.3.6 Quản lý sự di động (Đối với ứng dụng Mobile WiMAX)
Nguồn năng lượng và chuyển giao là hai vấn đề then chốt cho ứng dụng di động. Mobile WiMAX hỗ trợ Chế độ Ngủ (Sleep Mode) và chế độ rỗi (Idle Mode) để nguồn của trạm MS hoạt động hiệu quả. Mobile WiMAX cũng hỗ trợ chuyển giao liền mạch khi MS chuyển từ một BS này sang một BS khác với tốc độ di chuyển mà không bị ngắt kết nối.
Quản lý nguồn năng lượng
Mobile WiMAX hỗ trợ hai chế độ sử dụng nguồn hiệu quả - Sleep Mode và Idle Mode.
- Sleep Mode là trạng thái mà MS ở trong giai đoạn trước khi có bất cứ trao đổi thông tin gì với trạm gốc qua giao diện vô tuyến. Nhìn từ phía trạm gốc, những giai đoạn này có đặc điểm là không khả dụng với MS cho cả hướng xuống (DL) hay hướng lên (UL). Chế độ Sleep Mode cho phép MS tối thiểu năng lượng tiêu thụ và tối thiểu tài nguyên vô tuyến của trạm gốc. Chế độ Sleep Mode cũng cung cấp khả năng linh hoạt cho MS để dò các trạm gốc khác để thu thập thông tin hỗ trợ chuyển giao (handoff) trong chế độ Sleep Mode.
- Idle Mode cung cấp một cơ chế cho MS để sẵn sàng một cách định kỳ nhận
các bản tin quảng bá hướng xuống (DL) mà không cần đăng ký với một trạm gốc xác định nào khi MS di chuyển trong một môi trường có đường truyền vô tuyến được phủ sóng bởi nhiều trạm gốc. Chế độ Idle Mode làm lợi cho MS bằng cách loại bỏ yêu cầu chuyển giao (handoff) và các hoạt động bình thường khác và làm lợi cho mạng và trạm gốc bằng cách loại bỏ giao diện vô tuyến và lưu lượng chuyển giao (handoff) của mạng từ các MS không hoạt động trong khi vẫn cung cấp một phương pháp đơn giản để báo cho MS về lưu lượng DL đang xử lý.
Chuyển giao
Có ba phương pháp chuyển giao được chuẩn 802.16e hỗ trợ - Chuyển giao cứng (Hard Handoff – HHO), Chuyển trạm gốc nhanh (Fast Base Station Switching – FBSS) và Chuyển giao phân tập vĩ mô (Macro Diversity Handover – MDHO).
- Hard Handoff - đây là chức năng chuyển vùng dạng “phá vỡ trước khi thực hiện” "break before make" khi các thiết bị đầu cuối khách hàng không kết nối với bất kỳ trạm gốc nào trước khi kết nối với trạm gốc tiếp theo.
- FBSS - mạng chuyển vùng thuê bao giữa các trạm gốc trong khi vẫn duy trì sự kết nối mạng lõi với trạm gốc
- MDHO (Macro-diversity handover) - thuê bao duy trì một kết nối với đồng thời 2 hoặc nhiều trạm gốc để tạo sự chuyển vùng không bị gián đoạn với chất lượng kết nối cao nhất.
Trong đó, chuyển giao HHO là bắt buộc còn FBSS và MDHO là hai chế độ tuỳ chọn. Diễn đàn Wimax đã phát triển một vài công nghệ chuyển giao cứng rất thích cực trên nền tảng chuẩn 802.16e. Những cải tiến này được phát triển với mục đích giữ cho trễ chuyển giao lớp 2 ít hơn 50 ms.
Tại chế độ chuyển giao cứng HHO, MS chỉ duy trì kết nối với chỉ một BS duy nhất trong cùng một thời điểm. Kết nối của MS với trạm BS cũ sẽ được phá vỡ trước khi kết nối mới được thiết lập. Chuyển giao được thực hiện sau khi cường độ tín hiệu ở các cell kế cận vượt quá cường độ tín hiệu tại cell hiện thời. Phần ranh giới giữa các cell được coi như là nơi có sự chuyển giao cứng xảy ra.
Hình 3.17 thể hiện mức tín hiệu khi chuyển giao cứng HHO.
Hình 3.17: Chuyển giao cứng HHO
Khi được hỗ trợ FBSS, MS và BS duy trì một danh sách các BS mà liên quan đến FBSS với MS. Tập này gọi là một tập tích cực (Set Active). Trong FBSS, MS tiếp tục theo dõi các trạm gốc trong tập Active Set. Khi hoạt động trong FBSS, MS chỉ trao đổi với Anchor BS cho các bản tin đường lên và đường xuống chứa các kết nối lưu lượng và quản lý.
Việc chuyển từ một Anchor BS đến trạm khác (chẳng hạn chuyển giao BS) được thực hiện mà không cần có sự hiện diện của các bản tin báo hiệu HO. Các thủ tục cập nhật “mỏ neo” được thực hiện bởi cường độ tín hiệu giữa trạm gốc phục vụ thông qua kênh CQI. Một chuyển giao FBSS bắt đầu một quyết định dựa trên MS nhận hoặc phát dữ liệu từ trạm anchor BS mà nó có thể được thay đổi trong tập tích cực. MS dò tìm các BS lân cận và lựa chọn trạm nào thích hợp nhất trong tập tích cực.
Hình 3.18 mô tả việc một MS chuyển giao trạm gốc nhanh.
Hình 3.18: Chuyển trạm gốc nhanh (FBSS)
MS gửi báo cáo cho BS được chọn và thủ tục cập nhật tập tích cực được thực hiện bởi BS và MS. MS tiếp tục theo dõi cường độ tín hiệu của các BS trong tập tích cực và lựa chọn một BS để trở thành anchor BS. MS gửi báo cáo đến BS lựa chọn trên kênh CQICH hoặc MS khởi tạo bản tin yêu cầu HO. Một yêu cầu quan trọng của FBSS là dữ liệu sẽ được truyền đồng thời đến tất cả các phần tử của tập các BS hoạt động sẵn sang phục vụ MS.
Đối với các MS và BS hỗ trợ MDHO, MS và BS duy trì một tập các BS hoạt động mà có chế độ MDHO với MS, được gọi là tập phân tập (Diversity Set) . Tập này được định nghĩa cho mỗi MS ở trong mạng. Trong số các BS của tập các trạm gốc hoạt động, một BS mỏ neo được định nghĩa.
Chế độ thông thường để hoạt động chính là một trường hợp cụ thể của MDHO với tập các trạm gốc hoạt động chỉ gồm một BS đơn lẻ. Khi hoạt động trong chế độ