Hướng nghiên cứu tiếp theo

Một phần của tài liệu Xây dựng mô hình tìm kiếm và gợi ý tài nguyên học tập (Trang 127 - 149)

CHƯƠNG 7 KẾT LUẬN VÀ HƯỚNG NGHIÊN CỨU TIẾP THEO

7.2. Hướng nghiên cứu tiếp theo

Ngồi các kết quả đạt được như trên, luận án cịn một số hạn chế nhất định cần tiếp tục nghiên cứu trong thời gian tới.

Luận án đã đề xuất hai các tiếp cận tìm kiếm tài nguyên học tập dựa trên độ tương đồng văn bản và dựa trên mạng ngữ nghĩa. Trong thời gian tới, việc nghiên cứu phương pháp đánh giá hiệu quả của mơ hình tìm kiếm dựa trên mạng ngữ nghĩa ontology là cần thiết. Ngồi ra, việc so sánh hiệu quả tìm kiếm giữa hai cách tiếp cận này cũng cần được xem xét. Một giải pháp nhằm tăng khả năng xử lý dữ liệu tìm kiếm cũng cần được nghiên cứu sâu hơn trong bối cảnh dữ liệu tìm kiếm ngày đa dạng và khơng ngừng gia tăng.

Cần triển khai thực nghiệm trên nhiều tập dữ liệu khác nhau đối với các mơ hình dự đốn xếp hạng kết quả học tập, gợi ý tài nguyên học tập để cĩ đánh giá tồn diện, khách quan hơn đối với các kỹ thuật đề xuất, đặc biệt là kỹ thuật học sâu. Ngồi ra, cần nghiên cứu bổ sung nhiều thuộc tính (đa thuộc tính) cĩ yếu tố thời gian, chọn lọc các thuộc tính cĩ ảnh hưởng tính cực đến kết quả dự đốn để cải thiện hiệu quả của mơ hình học sâu.

Trong luận án này, các mơ hình tìm kiếm, dự đốn và gợi ý tập trung ở tài nguyên học tập dạng văn bản. Một vấn đề cĩ thể nghiên cứu trong thời gian tới là nghiên cứu cải tiến các mơ hình này cho dạng tài nguyên học tập khác, chẳng hạn video.

Do các nghiên cứu của luận án được thực hiện song song, thực nghiệm trên nhiều tập dữ liệu, vì vậy trong thời gian tới cần tạo sự gắn kết các nghiên cứu này một cách cĩ hệ thống hơn. Ngồi ra, cĩ thể nghiên cứu tích hợp các mơ hình tìm kiếm, dự đốn xếp hạng và gợi ý tài nguyên học tập thành một hệ thống quản lý tài nguyên học tập để áp dụng vào trường hợp thực tiễn của cơ sở giáo dục, đặc biệt là giáo dục đại học.

CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ

CT1. Tran Thanh Dien, Bui Huu Loc and Nguyen Thai-Nghe, 2019. Article Classification using Natural Language Processing and Machine Learning. The

13th International Conference on Advanced Computing and Applications (ACOMP 2019), pp. 78-84. DOI: 10.1109/ACOMP.2019.00019 (Scopus)

CT2. Tran Thanh Dien, Thanh Hai Nguyen, Nguyen Thai-Nghe, 2020. Deep Learning Approach for Automatic Topic Classification in An Online Submission System.

Advances in Science, Technology and Engineering Systems Journal, Vol. 5, No. 4,

pp. 700-709. ISSN: 2415-6698. DOI: 10.25046/aj050483 (Scopus)

CT3. Tran Thanh Dien, Huynh Ngoc Han and Nguyen Thai-Nghe, 2019. An Approach for Plagiarism Detection in Learning Resources. The 6th International Conference on Future Data and Security Engineering (FDSE 2019). Lecture Notes in

Computer Science. Springer Nature. Vol. 11814, pp. 722-730. E-ISSN: 1611-3349,

P-ISSN: 0302-9743. DOI: 10.1007/978-3-030-35653-8_52 (Scopus Q3).

CT4. Tran Thanh Dien, Le Van Trung, Nguyen Thai-Nghe, 2020. An approach for semantic-based searching in learning resources. The 12th IEEE International Conference on Knowledge and Systems Engineering (KSE 2020), pp 183-188.

DOI: 10.1109/KSE50997.2020.9287798 (Scopus)

CT5. Trần Thanh Điện, Nguyễn Ngọc Tuấn, Nguyễn Thanh Hải, Nguyễn Thái Nghe, 2020. Tăng tốc tìm kiếm tài nguyên học tập theo nội dung bằng kỹ thuật xử lý dữ liệu lớn. Kỷ yếu Hội thảo khoa học Quốc Gia lần thứ 9: Cơng nghệ Thơng

tin và Ứng dụng trong các lĩnh vực (CITA 2020). Trang 171-178. ISBN: 978-

604-84-5517-0

CT6. Tran Thanh Dien, Luu Hoai Sang, Thanh Hai Nguyen, Nguyen Thai-Nghe, 2020. Deep Learning with Data Transformation and Factor Analysis for Student Performance Prediction. International Journal of Advanced Computer Science and

Applications (IJACSA), Vol. 11, No. 8, pp. 711-721. E-ISSN: 2156-5570, P-ISSN:

2158-107X. DOI: 10.14569/IJACSA.2020.0110886 (Scopus Q3; ESCI)

CT7. Tran Thanh Dien, Luu Hoai Sang, Thanh Hai Nguyen, Nguyen Thai-Nghe. 2020. Course Recommendation with Deep Learning Approach. The 7th International Conference on Future Data and Security Engineering (FDSE 2020). Communications in Computer and Information Science. Springer Nature. Vol. 1306, pp. 63-77. E-ISSN: 1865-0937, P-ISSN: 1865-0929. DOI: 10.1007/978-981-33-4370-2_5 (Scopus Q4)

CT8. Tran Thanh Dien, Le Duy-Anh, Nguyen Hong-Phat, Nguyen Van-Tuan, Trinh Thanh-Chanh, Le Minh-Bang, Nguyen Thanh-Hai, and Nguyen Thai-Nghe,

2021. Four Grade Levels-based Models with Random Forest for Student Performance Prediction at a Multidisciplinary University. The 15th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS- 2021). Lecture Notes in Networks and Systems. Springer Nature. Vol. 278, pp. 1- 12. E-ISSN: 2367-3389, P-ISSN: 2367-3370. DOI: 10.1007/978-3-030-79725- 6_1 (Scopus Q4)

CT9. Tran Thanh Dien, Pham Huu Phuoc, Nguyen Thanh-Hai, Nguyen Thai-Nghe, 2021. Personalized student performance prediction using multivariate long short-term memory. The 8th International Conference on Future Data and Security Engineering (FDSE 2021). Communications in Computer and

Information Science. Springer Nature. Vol. 1500, pp. 238-247. E-ISSN: 1865-

0937, P-ISSN: 1865-0929. DOI: 10.1007/978-981-16-8062-5_16 (Scopus Q4) CT10. Tran Thanh Dien, Nguyen Thanh-Hai and Nguyen Thai-Nghe, 2021. Deep Matrix

Factorization for Learning Resources Recommendation. 13th International Conference on Computational Collective Intelligence (ICCCI 2021). Lecture

Notes in Computer Science. Springer Nature. Vol. 12876, pp. 167-

179. E-ISSN: 1611-3349, P-ISSN: 0302-9743. DOI: 10.1007/978-3-030-88081- 1_13 (Scopus Q3)

TÀI LIỆU THAM KHẢO

Adomavicius, G. and Tuzhilin, A., 2011. In. Recommender systems handbook. Springer.

217-253.

Aggarwal, C. C. and Zhai, C., 2012. A Survey of Text Classification Algorithms. Mining Text Data. 163-222.

Al-Khalifa, H. S., 2008. Building an Arabic learning object repository with an ad hoc recommendation engine. Proceedings of the 10th International Conference on Information Integration and Web-based Applications & Services. ACM, pp. 390-394.

Al-Rabadi, A., 2011. In. Recent Advances in Robust Control - Novel Approaches

and Design Methods.

Al-Shamery, E. and Gheni, H. Q., 2016. Plagiarism Detection using Semantic Analysis.

Indian journal of science and technology. 9(1): 1-8.

Al-Yahya, M., George, R. and Alfaries, A., 2015. Ontologies in E-

learning: review of the literature. International Journal of Software

Engineering and Its Applications. 9(2): 67-84.

Alfred, R., Chin, K., Anthony, P. et al, 2014. Ontology-Based Query Expansion for Supporting Information Retrieval in Agriculture.

Springer Proceedings in Complexity. 299-311.

Altabrawee, H., Ali, O. and Qaisar, S., 2019. Predicting Students’

Performance Using Machine Learning Techniques. JOURNAL OF

UNIVERSITY OF BABYLON for pure and applied sciences. 27: 194-205.

Andrej, K., 2015. The Unreasonable Effectiveness of Recurrent Neural Networks,

accessed on 2021. Available from

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Aristodemou, L. and Tietze, F., 2018. The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning

methods for analysing intellectual property (IP) data. World

Patent Information. 55: 37-51.

Aston, Z., Zachary C. Lipton, Mu Li and Smola, A. J., 2021. Dive into Deep Learning.

arXiv preprint arXiv:2106.11342.

Barajas, M. and Gannaway, G. J., 2007. Implementing E‐learning in

the traditional higher education institutions. Higher Education in

Europe. 32(2-3): 111-119.

Berners-Lee, T., 1998. What the Semantic Web can represent. IJCAI-

99 Workshop on Intelligent Information Integration.

Berners-Lee, T., Hendler, J. and Lassila, O., 2001. The semantic web.

Bhatia, R., 2020. Book-Crossing: User review ratings, accessed on

10/2/2020. Available from

https://www.kaggle.com/ruchi798/bookcrossing-dataset.

Bijaksana, M. A., Li, Y. and Algarni, A., 2013. A Pattern Based Two-Stage Text Classifier. Machine Learning and Data Mining in Pattern Recognition. Perner, P. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 169-182.

Bobadilla, J., Ortega, F., Hernando, A. and Gutiérrez, A., 2013. Recommender systems survey. Knowledge-based systems. 46: 109-132.

Bưttcher, A. and Wenzel, D., 2008. The Frobenius norm and the commutator. Linear

Algebra and its Applications. 429(8): 1864-1885.

Brewster, C. and O'Hara, K., 2004. Knowledge representation with ontologies: the present and future. IEEE Intelligent Systems. 19(1): 72-81.

Brown, J., 2004. Entity-tagged language models for question classification in a QA system. Report on: http://www-2.cs.cmu.edu/jonbrown/IRLab/Brown-IRLab.pdf Brownlee, J., 2018. When to Use MLP, CNN, and RNN Neural Networks, accessed on

2020. Available from https://machinelearningmastery.com/when-to-use-mlp- cnn-and-rnn-neural-networks/

Brownlee, J., 2020. ROC Curves and Precision-Recall Curves for Imbalanced

Classification, accessed on 2021. Available from

https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for- imbalanced-classification/

Brownlee, J., 2021. How to Choose an Activation Function for Deep Learning, accessed on 10/9/2021. Available from https://machinelearningmastery.com/choose-an- activation-function-for-deep-learning/

Chai, D., Wu, W., Han, Q., Wu, F. and Li, J., 2020. Description Based Text

Classification with Reinforcement Learning (pp. 1371-1382). PMLR.

Chakrabarti, S., 2002. Mining the Web: Discovering knowledge from hypertext data. Morgan Kaufmann Publishers. San Francisco, CA.

Chang, B., 2010. Culture as a tool: Facilitating knowledge construction in the context of a learning community. International Journal of Lifelong Education. 29(6): 705-722.

Cohen, S., Mamou, J., Kanza, Y. and Sagiv, Y., 2003. XSEarch: A semantic search engine for XML. Proceedings of the 29th international conference on Very large data bases-Volume 29. VLDB Endowment, pp. 45-56.

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning. 20(3): 273-297.

Deepak, 2020. 7 topic data for text classification, accessed on 16/1/2020. Available from https://www.kaggle.com/deepak711/4-subject-data-text-classification. Deniz, K., 2017. Benchmark dataset for Turkish text categorization Data Set, accessed

on 25/2/2020. Available from https://archive.ics.uci.edu/ml/datasets/TTC- 3600%3A+Benchmark+dataset+for+Turkish+text+categorization.

Dien, T. T., Duy-Anh, L., Hong-Phat, N. et al, 2021. Four Grade Levels-Based Models with Random Forest for Student Performance Prediction at a Multidisciplinary University. Complex, Intelligent and Software Intensive Systems. Springer International Publishing, Cham, pp. 1-12.

Dien, T. T., Hai, N. T., Sang, L. H. and Nghe, N. T., 2020. Deep learning with data transformation and factor analysis for student performance prediction.

International Journal of Advanced Computer Science and Applications. 11(8):

711-721.

Dien, T. T., Han, H. N. and Thai- Nghe, N., 2019. An Approach for Plagiarism Detection in Learning Resources. Future Data and Security Engineering. Springer International Publishing, Cham, pp. 722-730.

Dien, T. T., Hoai-Sang, L., Thanh-Hai, N. and Thai-Nghe, N., 2020. Course Recommendation with Deep Learning Approach. Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. Springer Singapore, Singapore, pp. 63-77.

Dien, T. T., Loc, B. H. and Thai-Nghe, N., 2019. Article Classification using Natural Language Processing and Machine Learning. Proceedings of the 2019 International Conference on Advanced Computing and Applications, ACOMP 2019, pp. 78-84.

Dien, T. T., Phuoc, P. H., Thanh-Hai, N. and Thai-Nghe, N., 2021. Personalized Student Performance Prediction Using Multivariate Long Short-Term Memory. Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. Springer Singapore, Singapore, pp. 238-247.

Dien, T. T., Thanh-Hai, N. and Thai-Nghe, N., 2020. Deep Learning Approach for Automatic Topic Classification in an Online Submission System. Advances in

Science, Technology and Engineering Systems Journal. 5(4): 700-709.

Dien, T. T., Trung, L. V. and Thai-Nghe, N., 2020. An approach for semantic-based searching in learning resources. Proceedings of the 12th International Conference on Knowledge and Systems Engineering (KSE), pp. 183-188.

Do Thi Thanh-Nga, 2010. Tính tốn độ tương tự ngữ nghĩa văn bản dựa vào độ tương tự giữa từ với từ. ĐHCN.

Doshi, S., 2019. Brief on Recommender Systems, accessed on 2021. Available from https://towardsdatascience.com/brief-on-recommender-systems-b86a1068a4dd Drachsler, H., Hummel, H. and Koper, R., 2008. Navigation support for learners in

informal learning environments. Proceedings of the 2008 ACM conference on Recommender systems. ACM, pp. 303-306.

Drachsler, H., Hummel, H. and Koper, R., 2009. Identifying the goal, user model and conditions of recommender systems for formal and informal learning. Journal

of Digital Information. 10(2): 4-24.

Dunlavy, D. M., Kolda, T. G. and Acar, E., 2011. Temporal Link Prediction Using Matrix and Tensor Factorizations. ACM Trans. Knowl. Discov. Data. 5(2): 1-27.

Durme, B., Huang, Y. and Nyberg, E., 2003. Towards light semantic processing for question answering. Proceedings of the HLT-NAACL 2003 workshop on Text meaning.

Farouk, M., 2020. Measuring text similarity based on structure and word embedding.

Cognitive Systems Research. 63: 1-10.

Feng, M., Heffernan, N. and Koedinger, K., 2009. Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction. 19(3): 243-266.

Fu, M., Qu, H., Yi, Z., Lu, L. and Liu, Y., 2019. A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System. IEEE Transactions on Cybernetics. 49(3): 1084-1096.

Garcia-Martinez, S. and Hamou-Lhadj, A., 2013. In. Multimedia Services in Intelligent Environments. Springer. 113-124.

García, E., Romero, C., Ventura, S. and De Castro, C., 2009. An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Modeling and User-Adapted Interaction. 19(1-2): 99-132.

Gennari, J. H., Musen, M. A., Fergerson, R. W. et al, 2003. The evolution of Protégé: an environment for knowledge-based systems development. International Journal of Human-computer studies. 58(1): 89-123.

Geoffrey Hinton, N. S., Kevin Swersky, 2012. Neural Networks for Machine

Learning:

Lecture 6a Overview of mini‐batch gradient descent,

accessed on 2020. Available from

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Ghazanfar, M. A., Prügel-Bennett, A. and Szedmak, S., 2012. Kernel-Mapping Recommender system algorithms. Information Sciences. 208: 81-104. Gomaa, W. and Fahmy, A., 2013. A Survey of Text Similarity Approaches.

International Journal of Computer Applications. 68(13): 13-18.

Gomez-Uribe, C. A. and Hunt, N., 2015. The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems. 6(4): 1-19.

Goodfellow, I., Bengio, Y. and Courville, A., 2016. 6.2.2.3 Softmax Units for Multinoulli Output Distributions. MIT Press. 180–184.

Greulich, S., Mayr, A., Gloekler, S. et al, 2019. Time-Dependent Myocardial Necrosis in Patients With ST-Segment-Elevation Myocardial Infarction Without Angiographic Collateral Flow Visualized by Cardiac Magnetic Resonance Imaging: Results From the Multicenter STEMI-SCAR Project. Journal of the American Heart Association. 8: e012429.

Grosso, W. E., Eriksson, H., Fergerson, R. W., Gennari, J. H., Tu, S. W. and Musen, M. A., 1999. Knowledge modeling at the millennium (the design and evolution of Protégé-2000).

Gruber, T. R., 1993. A translation approach to portable ontology specifications.

Knowledge acquisition. 5(2): 199-220.

Gunasinghe, U. L. D. N., Silva, W. A. M. D., Silva, N. H. N. D. d., Perera, A. S., Sashika, W. A. D. and Premasiri, W. D. T. P., 2014. Sentence similarity measuring by vector space model. 2014 14th International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 185-189.

Gunter, D. W., 2009. Semantic search. Bulletin of the American Society for

Information Science and Technology. 36: 36-37.

Guo, B., Zhang, R., Xu, G., Shi, C. and Yang, L., 2015. Predicting Students Performance in Educational Data Mining. 2015 International Symposium on Educational Technology (ISET), pp. 125-128.

Guo, H., Tang, R., Ye, Y., Li, Z. and He, X., 2017, DeepFM: a factorization-machine based neural network for CTR prediction. In. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia. AAAI Press. 1725–1731.

Hacioglu, K. and Ward, W., 2003. Question classification with support vector machines and error correcting codes. Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: companion volume of the Proceedings of HLT- NAACL 2003--short papers-Volume 2. Association for Computational Linguistics, pp. 28-30.

Haddoud, M., Mokhtari, A., Lecroq, T. and Abdeddạm, S., 2016. Combining supervised term-weighting metrics for SVM text classification with extended term representation. Knowledge and Information Systems. 49(3): 909-931. Hai, N. P., Sheu, T.-W. and Nagai, M., 2015. Predicting the Student Learning Outcomes

Based on the Combination of Taylor Approximation Method and Grey Models (in Vietnamese). VNU Journal of Science: Education Research. 31(2): 70-83.

Han, J. and Moraga, C., 1995. The influence of the sigmoid function parameters on the speed of backpropagation learning. From Natural to Artificial Neural Computation. Mira, J. and Sandoval, F. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 195-201.

Hastings, P., 2001. Adding syntactic information to LSA.

Herlocker, J. L., Konstan, J. A., Borchers, A. and Riedl, J., 1999. An algorithmic framework for performing collaborative filtering. 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999. Association for Computing Machinery, Inc, pp. 230-237.

Hochreiter, S. and Schmidhuber, J., 1997. Long Short-term Memory. Neural

computation. 9: 1735-1780.

Huynh-Ly, T.-N. and Thai-Nghe, N., 2013. A system for predicting students’s course result using a free recommender system library of MyMediaLite (in Vietnamese). Information technology conference 2013, Can Tho University. IBM Cloud Education, 2020. Convolutional Neural Networks, accessed on 2021.

Available from https://www.ibm.com/cloud/learn/convolutional-neural- networks.

Imran, H., Hoang, Q., Chang, T.-W. and Graf, S., 2014. A framework to provide personalization in learning management systems through a recommender system approach. Asian Conference on Intelligent Information and Database Systems. Springer, pp. 271-280.

Iqbal, Z., Qadir, J., Mian, A. and Kamiran, F., 2017. Machine Learning Based Student Grade Prediction: A Case Study.

Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat. 37: 547-579.

Một phần của tài liệu Xây dựng mô hình tìm kiếm và gợi ý tài nguyên học tập (Trang 127 - 149)

Tải bản đầy đủ (DOCX)

(149 trang)
w