CHUYỂN GIAO TRONG HỆ THỐNG CDMA

Một phần của tài liệu Giới thiệu công nghệ 3g WCDMA UMTS (Trang 38 - 109)

Thông thường chuyển giao (HO: Handover) được hiểu là quá trình trong

đó kênh lưu lượng của một UE được chuyển sang một kênh khác để đảm bảo chất lượng truyền dẫn. Tuy nhiên trong CDMA khái niệm này chỉ thích hợp cho chuyển giao cứng còn đối với chuyển giao mềm khái niệm này phức tạp hơn, ta sẽ xét cụ thể trong phần dưới đây.

Có thể chia HO thành các kiểu HO sau:

HO nội hệ thống xẩy ra bên trong một hệ thống WCDMA. Có thể chia nhỏ

HO này thành

o HO nội hệ thống giữa các ô thuộc cùng môt tần số sóng mang WCDMA

o HO giữa các tần số (IF-HO) giữa các ô hoạt động trên các tần số

WCDMA khác nhau

HO giữa các hệ thống (IS-HO) giữa các ô thuộc hai công nghệ truy nhập vô tuyến (RAT) khác nhau hay các chế độ truy nhập vô tuyến (RAM) khác nhau. Trường hợp thường xuyên xẩy ra nhất đối với kiểu thứ nhất là HO giữa các hệ thống WCDMA và GSM/EDGE. Tuy nhiên cũng có thể là IS- HO giữa WCDMA và hệ thống các hệ thống CDMA khác (cdma2000 1x chẳng hạn). Thí dụ về HO giữa các RAM là HO giữa các chế độ UTRA

FDD và UTRA TDD.

Có thể có các thủ tục HO sau:

Chuyển giao cứng (HHO) là các thủ tục HO trong đó tất cả các đường truyền vô tuyến cũ của một UE được giải phóng trước khi thiết lập các đường truyền vô tuyến mới

Chuyển giao mềm (SHO) và chuyển giao mềm hơn (xem hình 2.3) là các th

tục trong đó UE luôn duy trì ít nhất một đường vô tuyến nối đến UTRAN. Trong chuyển giao mềm UE đồng thời được nối đến một hay nhiều ô thuộc các nút B khác nhau của cùng một RNC (SHO nội RNC) hay thuộc các RNC khác nhau (SHO giữa các RNC). Trong chuyển giao mềm hơn UE được nối

đến ít nhất là hai đoạn ô của cùng một nút B. SHO và HO mềm hơn chỉ có thể xẩy ra trên cùng một tần số sóng mang và trong cùng một hệ thống.

Hình 2.3. Chuyển giao mềm (a) và mềm hơn (b)

Phụ thuộc sự tham gia trong SHO, các ô trong một hệ thống WCDMA

được chia thành các tập sau đây:

Tập tích cực bao gồm các ô (đoạn ô) hiện đang tham gia vào một kết nối SHO của UE

Tập lân cận/ tập được giám sát (cả hai từ được sử dụng như nhau). Tập này bao gồm tất cả các ô được giám sát/đo liên tục bởi UE và hiện thời không có trong tập tích cực

Tập được phát hiện. Tập này bao gồm các ô được UE phát hiện nhưng không thuộc tập tích cực lẫn tập lân cận.

SHO là một tính năng chung của hệ thống WCDMA trong đó các ô lân cận họat động trên cùng một tần số. Trong chế độ kết nối, UE liên tục đo các ô phục vụ và các ô lân cận (do RNC chỉ dẫn) trên tần số sóng mang hiện thời. UE so sánh các kết quả đo với các ngưỡng HO do RNC cung cấp và gửi báo cáo kết quả đo đến RNC khi thực hiện các tiêu chuẩn báo cáo. Vì thế SHO là kiểu chuyển giao được đánh giá bởi đầu cuối di động (MEHO: Mobile Estimated HO). Tuy nhiên giải thuật quyết định SHO được đặt trong RNC. Dựa trên các báo cáo kết quả đo nhận được từ UE (hoặc định kỳ hoặc được khởi động bởi một số các sự kiện nhất định), RNC lệnh cho UE bổ sung hay loại bỏ một số ô khỏi tập tích cực của mình (ASU: Active Set Apdate: cập nhật tập tích cực). 2.5. MÁY THU PHÂN TẬP ĐA ĐƯỜNG HAY MÁY THU RAKE

Phađinh đa đường trên kênh vô tuyến dẫn đến tán thời và chọn lọc tần số

làm hỏng tín hiệu thu. Để đánh giá hiện tượng tán thời trên đường truyền vô tuyến, người ta phát đi một xung hẹp (xung kim) và đo đáp ứng xung này tại phía thu. Đáp ứng này là bức tranh thể hiện sự phụ thuộc công suất của các

này. Đáp ứng này được gọi là lý lịch trễ công suất. Hình 2.4a cho thấy truyền sóng đa đường và hình 2.4b cho thấy thí dụ về lý lịch trễ công suất.

Hình 2.4. Truyền sóng đa đường và lý lịch trễ công suất

Chuỗi tín hiệu giả ngẫu nhiên được phát đi ở CDMA có thuộc tính là các phiên bản dịch thời của nó tại phía thu hầu như không tương quan. Như vậy một tín hiệu được truyền từ máy phát đến máy thu theo nhiều đường khác nhau (thời gian trễ khác nhau) có thể được phân giải vào các tín hiệu phađinh khác nhau bằng cách lấy tương quan tín hiệu thu chứa nhiều phiên bản dịch thời của chuỗi giả ngẫu nhiên. Máy thu sử dụng nguyên lý này được gọi là máy thu phân tập đa

đường hay máy thu RAKE (hình 2.5).

Trong máy thu RAKE để nhận được các phiên bản dịch thời của chuỗi ngẫu nhiên, tín hiệu thu phải đi qua đường trễ trước khi được lấy tương quan và

được kết hợp. Đường trễ bao gồm nhiều mắt trễ có thời gian trễ bằng thời gian một chip Tc. Máy thu dịch định thời bản sao mã trải phổ từng chip cho từng ký hiệu thông tin để giải trải phổ ký hiệu trong vùng một ký hiệu và tạo nên lý lịch trễ công suất (xem hình 2.5a). Với tham khảo lý lịch trễ công suất (bức tranh thể

hiện công suất và trễ của các đường truyền) được tạo ra, máy thu chọn các

đường truyền có công suất vượt ngưỡng để kết hợp RAKE trên cơ sở số lượng bộ tương quan, bộước tính kênh và bộ bù trừ thay đổi pha (được gọi là các ngón máy thu RAKE). Trong trường hợp áp dụng thu phân tập không gian hay phân tập giữa các đoạn ô, lý lịch trễ công suất được tạo ra cho mỗi nhánh và các

đường truyền được chọn từ lý lịch trễ công suất suất tổng hợp của tất cả các nhánh. Trong thực tế, vì các tín hiệu trải phổ gồm nhiễu của các người sử dụng khác và các tín hiệu đa đường của kênh người sử dụng, nên giá trị ngưỡng được lập dưạ trên mức công suất tạp âm nền và các đường truyền có SIR hiệu dụng (có công suất thu vượt ngưỡng) được chọn. Vì MS chuyển động (hoặc môi trường truyền sóng thay đổi khi MS cố định), nên vị trí đường truyền (thời gian trễ) được kết hợp RAKE cũng sẽ thường xuyên thay đổi, máy phải định kỳ cập nhật lý lịch trễ đường truyền và cập nhật các đường truyền được kết hợp RAKE trên cơ sở lý lịch mới (quá trình này được gọi là tìm kiếm đường truyền vì nó liên quan đến tìm kiếm đường truyền để kết hợp RAKE).

2.6. CÁC MÃ TRẢI PHỔ SỬ DỤNG TRONG WCDMA

Khái niệm trải phổ được áp dụng cho các kênh vật lý, khái niệm này bao gồm hai thao tác. Đâu tiên là thao tác định kênh, trong đó mỗi ký hiệu số liệu dược chuyển thành một số chip nhờ vậy tăng độ rộng phổ tín hiệu. Số chip trên một ký hiệu (hay tỷ số giữa tốc độ chip và tốc độ ký hiệu) được gọi là hệ số trải phổ (SF: Spectrum Factor), hay nói một cách khác SF=Rs/Rc trong đó Rs là tốc

độ ký hiệu còn Rc là tốc đô chip. Hệ số trải phổ là một giá trị khả biến, ngoại trừ đối với kênh chia sẻđường xuống vật lý tốc độ cao (HS-PDSCH ) trong HSDPA có SF=16. Thao tác thứ hai là thao tác ngẫu nhiên hóa để tăng tính trực giao trong đó một mã ngẫu nhiên hóa được ‘trộn’ với tín hiệu trải phổ. Mã ngẫu nhiên hoá được xây dựng trên cơ sở mã Gold.

Trong quá trình định kênh, các ký hiệu số liệu được nhân với một mã OVSF (Orthogonal Variable Spread Factor: mã trực giao hệ số khả biến) đồng bộ về thời gian với biên của ký hiệu. Trong 3GPP, OVSF (hình 2.6) được sử

dụng cho các tốc độ ký hiệu khác nhau và được ký hiệu là Cch,SF,k trong đó SF là hệ số trải phổ của mã và k là số thứ tự mã (0≤k≤SF-1). Các mã định kênh có các tính chất trực giao và được sử dụng để phân biệt các thông tin được phát đi cùng từ một nguồn: (1) các kết nối khác nhau trên đường xuống trong cùng một ô trên

UE. Trên đường xuống các mã OVSF trong một ô bị hạn chế vì thế cần được quản lý bởi RNC, tuy nhiên điều này không xẩy ra đối với đường lên.

Cần lưu ý khi chọn mã định kênh để chúng không tương quan với nhau. Chẳng hạn khi đã chọn mã Cch,8,4=+1-1+1-1+1-1+1-1, không được sử dụng mã Cch,16,8=+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1; vì hai mã này hoàn toàn giống nhau (tích của chúng bằng 1) và chúng sẽ gây nhiễu cho nhau.

Các mã OVSF chỉ hiệu quả khi các kênh được đồng bộ hoàn hảo tại mức ký hiệu. Mất tương quan chéo do truyền sóng đa đường được bù trừ bởi thao tác ngẫu nhiên hóa bổ sung. Với thao tác ngẫu nhiên hóa, phần thực (I) và phần ảo (Q) của tín hiệu trải phổ được nhân bổ sung với mã ngẫu nhiên hóa phức. Mã ngẫu nhiên hóa phức được sử dụng để phân biệt các nguồn phát: (1) các ô khác nhau đối với đường xuống và (2) các UE khác nhau đối với đường lên. Các mã này có các tính chất tương quan tốt (trung bình hóa nhiễu) và luôn được sử dụng

để ‘trộn’ với các mã trải phổ nhưng không làm ảnh hưởng độ rộng phổ tín hiệu và băng thông truyền dẫn.

Hình 2.6. Cây mã định kênh

Đường truyền giữa nút B và UE trong WCDMA chứa nhiều kênh. Có thể

chia các kênh này thành hai loại: (1) kênh riêng để truyền lưu lượng và (2) kênh chung mang các thông tin điều khiển và báo hiệu. Đường truyền từ UE đến nút B được gọi là đường lên, còn đường ngược lại từ nút B đến UE được gọi là

đường xuống. Trước hết ta xét trải phổ cho các kênh đường lên. 2.7. TRẢI PHỔ VÀ ĐIỀU CHẾĐƯỜNG LÊN

2.7.1. Trải phổ và điều chế các kênh riêng đường lên

Nguyên lý trải phổ cho DPDCH (Dedicated Physical Data Channel: kênh số liệu vật lý riêng, kênh để truyền lưu lượng của người sử dụng) và DPCCH (Dedicated Physical Control Channel: kênh điều khiển vật lý riêng; kênh đi cùng

với DPDCH để mang thông tin điều khiển lớp vật lý) được minh họa trên hình 2.7.

Một DPCCH và cực đại sáu DPDCH song song giá trị thực có thể được trải phổ và phát đồng thời. DPCCH luôn được trải phổ bằng mã Cc=Cch,256,0, trong đó k=0. Nếu chỉ một kênh DPDCH được phát trên đường lên, thì DPDCH1

được trải phổ với mã Cd,1=Cch,SF,k, trong đó k=SF/4 là số mã OVSF và k=SF/4. Nghĩa là nếu hệ số trải phổ SF=128 thì k=32. Nếu nhiều DPDCH được phát, thì tất cả DPDCH đều có hệ số trải phổ là 4 (tốc độ bit kênh là 960kbps) và DPDCHn được trải phổ bởi mã Cd,n=Cch,4,k, trong đó k=1 nếu n∈{1,2}, k=3 nếu n∈{3,4} và k=2 nếu n∈{5,6}. Để bù trừ sự khác nhau giữa các hệ số trải phổ

của số liệu, tín hiệu trải phổđược đánh trọng số bằng các hệ số khuyếch đại ký hiệu là βc cho DPCCH và βd cho DPDCH. Các hệ số khuyếch đại này được tính toán bởi SRNC và được gửi đến UE trong giai đoạn thiết lập đường truyền vô tuyến hay đặt lại cấu hình. Các hệ số khuyếch đại nằm trong dải từ 0 đến 1 và ít nhất một trong số các giá trị của βc và βd luôn luôn bằng 1. Luồng chip của các nhánh I và Q sau đó được cộng phức với nhau và được ngẫu nhiên hóa bởi một mã ngẫu nhiên hóa phức được ký hiệu là Sdpch,n trên hình 2.7. Mã ngẫu nhiên hóa này được đồng bộ với khung vô tuyến, nghĩa là chip thứ nhất tương ứng với đầu khung vô tuyến.

Hình 2.7. Trải phổ và điều chế DPDCH và DPCCH đường lên

Các nghiên cứu cho thấy mọi sự phát không liên tục trên đường lên có thể

gây nhiễu âm thanh cho thiết bị âm thanh đặt gần máy đầu cuối di động. Thí dụ điển hình là trường hợp nhiễu tần số khung (217 Hz=1/4,615ms) gây ra do các

đầu cuối GSM. Để tránh hiệu ứng này, kênh DPCCH và các kênh DPDCH không được ghép theo thời gian mà được ghép theo mã I/Q (điều chế QPSK hai

kênh) với ngẫu nhiên hoá phức. Minh họa trên hình 2.8 cho thấy sơ đồ điều chế

này cho phép truyền dẫn liên tục ngay cả trong các chu kỳ im lặng khi chỉ có thông tin điều khiển lớp 1 để duy trì hoạt động đường truyền (DPCCH) là được phát.

Hình 2.8. Truyền dẫn kênh điều khiển vật lý riêng đường lên và kênh số liệu vật lý riêng đường lên khi có/ không có (DTX) số liệu của người sử dụng

Như minh họa trên hình 2.9, các mã ngẫu nhiên hóa phức được tạo ra bằng cách quay pha giữa các chip trong một chu kỳ ký hiệu trong giới hạn ±900. Bằng cách này hiệu suất của bộ khuếch đại (liên quan đến tỷ số công suất đỉnh trên công suất trung bình) trong UE hầu như không đổi không phụ thụ thuộc vào tỷ sốβ giữa DPDCH và DPCCH.

Hình 2.9. Chùm tín hiệu đối với ghép mã I/Q sử dung ngẫu nhiên hóa phức, β

biểu diễn cho tỷ số công suất giữa DPDCH và DPCCH.

DPCCH và các DPDCH có thể được ngẫu nhiên hóa bằng các mã ngẫu nhiên dài hoặc ngắn. Có 224 mã ngẫu nhiên hóa dài đường lên và 224 mã ngẫu nhiên ngắn đường lên. Vì có thể sử dụng được hàng triệu mã nên không cần quy hoạch mã đường lên. Số mã ngẫu nhiên cho DPCH (0,…., 16777215), cùng với SF thấp nhất được phép của mã định kênh (4, 8, 16, 32, 128 và 256) cho phần số

liệu được ấn định bởi các lớp cao hơn, chẳng hạn khi thiết lập kết nối RRC hoặc khi điều khiển chuyển giao.

Phần này sẽ trình bầy ấn định mã cho tiền tố và phần bản tin của PRACH là một dạng kênh chung đường lên.

Trải phổ và ngẫu nhiên hóa phần bản tin PRACH được minh họa trên

hình 2.10.

Hình 2.10. Trải phổ và điều chế phần bản tin PRACH

Phần điều khiển của bản tin PRACH được trải phổ bằng mã định kênh Cc=Cch,256,m, trong đó m=16.s+15 và s (0 ≤s≤15) là chữ ký tiền tố và phần số liệu

được trải phổ bằng mã định kênh Cd=Cch,SF,m, trong đó SF (có giá trị từ 32 đến 256) là hệ số trải phổ sử dụng cho phần số liệu và m=SF.s/16.

Phần bản tin PRACH luôn luôn được trải phổ bằng mã ngẫu nhiên hóa dài. Độ dài của mã ngẫu nhiên hóa được sử dụng cho phần bản tin là 10ms. Có tất cả là 8192 mã ngẫu nhiên hóa.

2.8. TRẢI PHỔ VÀ ĐIỀU CHẾĐƯỜNG XUỐNG 2.8.1. Sơ đồ trải phổ và điều chế đường xuống 2.8.1. Sơ đồ trải phổ và điều chế đường xuống

Khái niệm trải phổ và ngẫu nhiên hóa đường xuống được minh họa trên hình 2.11. Ngoại trừ các SCH (kênh đồng bộ sẽ xét trong chương 3), mỗi cặp hai bit kênh trước hết được biến đổi từ nối tiếp vào song song tương ứng một ký hiệu điều chế, sau đó được đặt lên các nhánh I và Q. Sau đó các nhánh I và Q

được trải phổ đến tốc độ 3,84Mcps bằng cùng mỗi mã dịnh kênh Cch,SF,m. Các chuỗi chip giá trị thực trên các nhánh I và Q sau đó được ngẫu nhiên hóa bằng mã ngẫu nhiên hóa phức để nhận dạng nguồn phát nút B, mã này đựợc ký hiệu là Sdl,n trên hình 2.11. Mã ngẫu nhiên hóa này được đồng bộ với mã ngẫu nhiên hóa sử dụng cho P-CCPCH (kênh vật lý điều khiển chung sơ cấp sẽ xét trong cương 3), trong đó chíp phức đầu tiên của khung P-CCPCH được nhân với chip số 0 của mã ngẫu nhiên hóa này.

Sau trải phổ, mỗi kênh vật lý đường xuống (trừ các SCH) được đánh trọng số bằng các hệ số trọng số riêng ký hiệu là Gi như trên hình 2.11. P-SCH và S- SCH giá trị phức được đánh trọng số riêng bằng các hệ số trọng số Gp và Gs. Tất

cả các kênh đường xuống được kết hợp với nhau bằng cộng phức. Chuỗi nhận

được sau trải phổ và ngẫu nhiên hóa được điều chế QPSK.

Hình 2.11. Sơđồ trải phổ và điều chế cho tất cả các kênh vật lý đường xuống 2.8.2. Các mã trải phổđường xuống

Trên đường xuống, cùng các mã định kênh như trên đường lên (mã OVSF) được sử dụng. Thông thường mỗi ô chỉ có một cây mã và mỗi cây mã

được đặt dưới một mã ngẫu nhiên hóa để dùng chung cho nhiều người sử dụng. Theo quy đinh, các mã định kênh dùng cho P-CPICH (kênh hoa tiêu chung sơ

Một phần của tài liệu Giới thiệu công nghệ 3g WCDMA UMTS (Trang 38 - 109)

Tải bản đầy đủ (PDF)

(109 trang)