Gán nhãn trình tự

Một phần của tài liệu Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu. (Trang 47 - 56)

CHƯƠNG 3 MÔ HÌNH MẠNG PIXELLINK CHO PHÁT HIỆN VĂN BẢN

4.4 Gán nhãn trình tự

Một bidirectional Recurrent Neural Network được xây dựng trên đỉnh của các tầng Convolutinal, được xem như tầng recurrent, tầng recurrent có nhiệm vụ dự đốn một phân phối �� cho mỗi frame của chuỗi đặc trưng = � 1, … … �� Những lợi thế của tầng recurrent là:

• Mơ hình RNN có khả năng mạnh mẽ trong lưu giư nội dung dạng chuỗi.

• Xử lý trên nội dung chuỗi là phù hợp và hưu dụng hơn nhiều so với xử lý trên tầng kí tự riêng lẻ. Bởi vì ví dụ như nhận dạng chuỗi trên bức ảnh thì việc xác định tầng kí tự rất khó khăn và khi ấy có nhiều trường sẽ dễ bị nhầm lẫn giưa

• Việc tối ưu của RNN là tối ưu hàm mất mát CTC, có thể sử dụng thuật tốn lan truyền ngược để tìm nghiệm tối ưu cho hàm mất mát này. Điều này dẫn đến sự kết hợp với các tầng convolution để tạo thành một mạng thống nhất.

• RNN có thể thực hiện trên các chuỗi với độ dài thay đổi

Để hiểu thêm về tầng này, dưới đây sẽ trình bày ngắn gọn về mạng RNN và sử dụng LSTM để khắc phục nhưng hạn chế của RNN.

Nếu sử dụng DL với đầu vào là ảnh thì có hai mạng nổi tiếng đó là CNN và RNN, trong đó RNN cho bài tốn dữ liệu đầu vào là chuỗi, bởi vì một chuỗi các sự kiện sẽ có mối liên quan lẫn nhau. Nên chỉ xử lý tầng thời điểm riêng lẻ sẽ khơng có đủ thơng tin để đưa ra câu trả lời chính xác nên từ đó mạng RNN ra đời nhằm giải quyết vấn đề này, dưới đây là cấu trúc của mạng RNN

Hình 4.0.2 Mơ hình RNNCác thuộc tính Các thuộc tính

• �1là đầu vào tại bước

• ��là trạng thái ẩn tại bước t , đó là bộ nhớ của mạng. �� được tính dựa trên trạng thái trước đó và đầu vào tại đó

Hàm f thường dùng là một hàm phi tuyến, thường sử dụng hàm ���ℎ hoặc ở thời điểm đầu tiên là �−1 thường được khởi tạo là 0

�� là đầu ra tại thời điểm t , như vậy muốn xác định từ xuất hiện tiếp theo thì �� là xác xuất của các từ trong từ điển, hay

�� ( ( ( ( ( ( ( ( ( ( ( ( ( ( (= �)

Nhưng thực tế RNN không thể xử lý với các phụ thuộc xa, đó là một vấn đề đã được chứng minh của Hochreiter và Bengio được trình bày trong bài báo của mình.

Từ nhưng hạn chế của RNN mạng LSTM ra đời nhằm giải quyết nhưng nhược điểm trên, LSTM là một dạng đặc biệt của RNN

Việc ghi nhớ thơng tin là một tính chất của mạng LSTM, sau đây là cấu trúc mạng

Hình 4.0.3 Cấu trúc mạng LSTM

TT Kí hiệu Nội dung

1 Tầng mạng

3 Chuyển tiếp nội dung

4 Kết hợp nội dung

5 Sao chép nội dung

Bảng 4.1 Các kí hiệu

Để giải thích rõ tại sao LSTM làm việc hiệu quả, tơi xin trình bày sơ qua về các thành phần trong mỗi khối mạng

Trạng thái của các khối mạng như một băng chuyền, nó chuyền từ khối này sang khối tiếp theo trong mạng. Gần như thơng tin ít bị thay đổi bởi ở các mắt xích chỉ tương tác tuyến tính.

Hình 4.0.4 Hình minh họa thơng tin được truyền đi

thiết bằng các cổng của nó, điều này được thực hiện bởi tầng mạng � ��� ��� và một phép nhân

Hình 4.0.5 Tầng mạng và phép nhân

Số lượng thơng tin có thể đi qua được quyết định bởi hàm số ������� , miền giá

trị của hàm ������� nằm trong khoảng [0,1]. Nếu là 0 thì khơng cho thơng tin đi qua, nếu là 1 nghĩa là cho tất cả thông tin đi qua

Để cho tiết hơn về LSTM sẽ đi sâu vào bên trong LSTM

Đầu tiên là đưa ra quyết định nhưng thông tin cần bỏ từ khối. Điều này được thực hiện bởi hàm �������, hay gọi với một tên khác là “tầng cổng quên”. Với đầu vào là ℎ�−1 và �� đi qua hàm �������, vậy kết quả của hàm ������� là một số thuộc [0, 1] quyết định lượng thơng tin đi qua.

Hình 4.0.6 Hình minh họa cổng qn

Sau khi quyết định thông tin đi qua cổng hay không thì bước tiếp theo sẽ là xem xét thơng tin nào sẽ lưu lại trong khối. Ở bước này được chia thành hai phần

• Sử dụng sigmoid để quyết định thông tin được cập nhật, biến đổi thông tin bằng cách sử dụng hàm tạo ra giá trị mới để cập nhật trạng thái.

• Sử dụng kết quả trên để cập nhật trạng thái của khối

Hình 4.0.7 Hình mơ tả cập nhật khối

�� = (((((((((((((((�. [ℎ�−1, ��] + ��)PT 5.2

�̃� = tanh (��. [ℎ�−1, ��] + ��)

Như vậy trạng thái ��−1 cũ trước đó được cập nhật thành trạng thái mới �� . Bằng cách nhân trang thái cũ với ft, bởi ft quyết định lượng thông tin sẽ quên, sau đó thêm thơng tin mới vào, tức là cộng thêm �� ∗ �̃� . Như vậy trạng thái mới phụ thuộc nhiều vào quyết định trước đó

Hình 4.0.8 Hình mơ tả q trình cập nhật trạng thái mới

Phương trình tương đương

�� = �� ∗ ��−1 +

�� ∗ �̃�

PT5.4

Mỗi một trạng thái của khối sẽ quyết định giá trị đầu ra, để xác định giá trị đầu ra cần thực hiện các bước sau

• Dùng tầng sigmoid để xác định thơng tin cần đưa ra từ khối, sử dụng hàm ���ℎ chuyển trạng thái tế bào về khoảng [-1, 1]

• Thực hiện phép nhân của kết quả thực hiện bởi hàm tanh ở trên với giá trị đầu ra

Một phần của tài liệu Nghiên cứu bài toán bóc tác thông tin trong chứng minh thư sử dụng học sâu. (Trang 47 - 56)

Tải bản đầy đủ (DOC)

(70 trang)
w