P X < medX X≥ medX =
3.1.3. Cỏc phương phỏp chọn mẫu:
3.1. Khỏi niệm về phương phỏp mẫu, mẫu ngẫu nhiờn:
3.1.1. Khỏi niệm về phương phỏp mẫu:
Phương phỏp chọn mẫu là phương phỏp từ tập hợp cần
nghiờn cứu chọn ra một số phần tử, phõn tớch cỏc phần tử này và dựa vào đú để kết luận về dấu hiệu cần nghiờn cứu của tổng thể.
Tập hợp gồm n phần tử lấy ra từ tổng thể gọi là mẫu, n được gọi là kớch thước mẫu (hay cỡ mẫu).
Để đảm bảo tớnh đại diện của mẫu và tiện cho việc mụ
hỡnh hoỏ, mẫu được tạo lập bởi cỏc giả thiết sau:
+ Lấy lần lượt từng phần tử vào mẫu. Phương phỏp này
gọi là phương phỏp đơn giản.
+ Mỗi phần tử được lấy vào mẫu một cỏch hoàn toàn
ngẫu nhiờn, tức là mọi phần tử của tổng thể đều cú thể được lấy vào mẫu với khả năng như nhau.
+ Cỏc phần tử được lấy vào mẫu theo phương thức hoàn lại, tức là trước khi lấy phần tử thứ k thỡ trả lại tổng thể
3.1.2. Mẫu ngẫu nhiờn:
Giả sử theo một phương phỏp nào đú từ tổng thể lấy ra n phần tử tạo nờn mẫu cỡ n. Gọi Xi (i = 1,…,n) là giỏ trị của dấu hiệu đo lường được trờn phần tử thứ i của mẫu. Ta cú thể mụ hỡnh hoỏ dấu hiệu bởi một đại lượng ngẫu nhiờn X với
một quy luật phõn phối xỏc suất nào đú nờn việc chọn mẫu kớch thước n theo nguyờn tắc trờn cú thể xem như tiến hành n phộp thử độc lập đối với X, lỳc đú cỏc giỏ trị Xi của dấu hiệu thu được trờn mẫu cú thể xem như cỏc đại lượng ngẫu nhiờn thu được qua việc tiến hành n phộp thử độc lập đối với đại lượng ngẫu nhiờn X.
Khi đú ta cú định nghĩa mẫu ngẫu nhiờn như sau.
Mẫu ngẫu nhiờn cỡ n là tập hợp của n biến ngẫu
nhiờn độc lập X1, X2,…,Xn được thành lập từ đại lượng ngẫu nhiờn X trong tổng thể nghiờn cứu và cú cựng quy luật phõn phối xỏc suất với X.
3.1.3. Cỏc phương phỏp chọn mẫu: