Định hướng nghiên cứu tiếp theo của đề tài

Một phần của tài liệu Ứng dụng mô hình học máy trong dự đoán khả năng chịu nén của cột ống thép nhồi bê tông (Trang 61 - 100)

- Các nghiên cứu trong tương lai cĩ thể thu thập bổ sung tập dữ liệu của các cột CFST để cung cấp độ chính xác hơn trong dự đốn. Bên cạnh đĩ, các nghiên cứu trong tương lai nên xem xét việc tối ưu hĩa các thơng số của mơ hình dự đốn để nâng cao hiệu suất của mơ hình.

51

DANH MỤC BÀI BÁO KHOA HỌC

1. Ngo, Ngoc-Tri, Thi-Phuong-Trang Pham, Le Hoang An, Quang-Trung Nguyen, Thi-Thao-Nguyen Nguyen and Van-Vu Huynh, Dự đốn cường độ trục

trong cột bê tơng cốt thép ống trịn sử dụng trí tuệ nhân tạo. Tạp chí Khoa học Cơng

nghệ Xây dựng (STCE) - HUCE 15, số. 2 (ngày 27 tháng 4 năm 2021): 113-126. https://doi.org/10.31814/stce.nuce2021-15(2)-10

2. Ngoc-Tri Ngo, Hoang An Le, Van-Vu Huynh, Phạm Thị Phương Trang, Machine Learning Models for Inferring the Axial Strength in Short Concrete-Filled Steel Tube Columns Infilled with Various Strength Concrete, Engineering Journal, Vol. 25, No. 7 (2021). (ESCI, Scopus).https://doi.org/10.4186/ej.2021.25.7.135

52

DANH MỤC TÀI LIỆU THAM KHẢO

TIẾNG VIỆT

[1] L.-H. Han, W. Li, and Bjorhovde, "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members," (in e), Journal of constructional steel research, vol. 100, pp. 211-228, 2014.

[2] N. V. Trung, Kết cấu ống thép nhồi bê tơng. Hà Nội: Xây Dựng, 2006, p. 04. [3] V. K. Yến, Đ. V. Dựa, T. Đ. Bình, V. T. K. Dung, and T. V. Tấn, "Hiệu quả

ứng dụng bê tơng chất lượng siêu cao cho cơng trình cầu nghiên cứu cho cầu dân sinh An Thượng - Thành phố Hưng Yên," (in v), Tạp chí Khoa học Cơng

nghệ Xây dựng (KHCNXD) - ĐHXD, vol. 14, no. 1V, pp. 46-59, 2020.

[4] G. Giakoumelis and D. Lam, "Axial capacity of circular concrete-filled tube columns," (in e), Journal of Constructional Steel Research, vol. 60, no. 7, pp. 1049-1068, 2004.

[5] W. L. A. de Oliveira, S. De Nardin, A. L. H. d. C. El Debs, and M. K. El Debs, "Evaluation of passive confinement in CFT columns," (in e), Journal of Constructional Steel Research, vol. 66, no. 4, pp. 487-495, 2010/04/01/ 2010.

[6] Q. Ren, M. Li, M. Zhang, Y. Shen, and W. Si, "Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm," (in e), Applied Sciences, vol. 9, no. 14, p. 2802, 2019. [7] V. Q. Viet, H. Ha, and P. T. Hoan, "Evaluation of ultimate bending moment of

circular concrete–filled double skin steel tubes using finite element analysis," (in e), Journal of Science and Technology in Civil Engineering (STCE)-NUCE, vol. 13, no. 1, pp. 21-32, 2019.

[8] J. Chen, T. Chan, and J. Castro, "Parametric study on the flexural behaviour of circular rubberized concrete-filled steel tubes," in Tubular Structures XVI: CRC Press, 2017, pp. 51-59.

[9] G. Li, B. Chen, Z. Yang, and Y. Feng, "Experimental and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns," (in e), Thin-Walled Structures, vol. 127, pp. 483-499, 2018. [10] M. F. Javed, N. R. Sulong, S. A. Memon, S. K. U. Rehman, and N. B. Khan, "FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete," (in e), Thin-walled structures,

vol. 119, pp. 470-481, 2017.

[11] R. B. Knowles and R. Park, "Strength of concrete filled steel tubular columns," (in e), Journal of the structural division, vol. 95, no. 12, pp. 2565-2588, 1969. [12] Z. Liu and S. C. Goel, "Cyclic load behavior of concrete-filled tubular braces,"

(in e), Journal of Structural Engineering, vol. 114, no. 7, pp. 1488-1506, 1988. [13] A. E. Kilpatrick and B. V. Rangan, "Tests on high-strength concrete-filled steel

tubular columns," (in e), Structural Journal, vol. 96, no. 2, pp. 268-274, 1999. [14] K. Sakino, H. Nakahara, S. Morino, and I. Nishiyama, "Behavior of centrally

loaded concrete-filled steel-tube short columns," (in e), Journal of structural engineering, vol. 130, no. 2, pp. 180-188, 2004.

53

[15] S. K. Alrebeh and T. Ekmekyapar, "Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals," in

Structures, 2019, vol. 22, pp. 98-108: Elsevier.

[16] A. Bahrami and A. Mahmoudi Kouhi, "Compressive behaviour of circular, square, and rectangular concrete-filled steel tube stub columns," (in e), Civil engineering and architecture, vol. 8, no. 5, pp. 1119-1126, 2020.

[17] X. Chen, T. Zhou, Z. Chen, J. Liu, and B. Jiang, "Mechanical properties of special-shaped concrete-filled steel tube columns under eccentric compression," (in e), Journal of Constructional Steel Research, vol. 167, p. 105779, 2020. [18] F. Yin, S.-D. Xue, W.-L. Cao, H.-Y. Dong, and H.-P. Wu, "Behavior of multi-

cell concrete-filled steel tube columns under axial load: Experimental study and calculation method analysis," (in e), Journal of Building Engineering, vol. 28, p. 101099, 2020.

[19] Z. Liu, Y. Lu, S. Li, and S. Yi, "Behavior of steel tube columns filled with steel-fiber-reinforced self-stressing recycled aggregate concrete under axial compression," (in e), Thin-Walled Structures, vol. 149, p. 106521, 2020.

[20] A. I. Nour and E. M. Güneyisi, "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns," (in e), Composites Part

B: Engineering, vol. 173, p. 106938, 2019.

[21] Y. Yu, W. Li, J. Li, and T. N. Nguyen, "A novel optimised self-learning method for compressive strength prediction of high performance concrete," (in e),

Construction and Building Materials, vol. 184, pp. 229-247, 2018.

[22] A. L. Hoang and E. Fehling, "A review and analysis of circular UHPC filled steel tube columns under axial loading," (in e), Structural engineering and mechanics, vol. 62, no. 4, pp. 417-430, 2017.

[23] J. R. Liew, M. Xiong, and D. Xiong, "Design of concrete filled tubular beam- columns with high strength steel and concrete," in Structures, 2016, vol. 8, pp. 213-226: Elsevier.

[24] N. V. Tue, H. Schneider, G. Simsch, and D. Schmidt, "Bearing capacity of stub columns made of NSC, HSC and UHPC confined by a steel tube," in

Proceedings of international symposium on high performance concrete, 2004,

pp. 339-350.

[25] B. Uy, M. Khan, Z. Tao, and F. Mashiri, "Behaviour and design of high strength steel-concrete filled columns," in Proceedings of the 2013 world congress on advances in structural engineering and mechanics (ASEM13), Jeju, Korea, 2013, pp. 150-167.

[26] A. Le Hoang and E. Fehling, "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete," (in e), Construction and Building Materials, vol. 153, pp. 790-806, 2017/10/30/ 2017.

[27] A. H. Le, F. Ekkehard, D.-K. Thai, and Nguyen, "Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns," (in e), Steel Compos Struct, vol. 29, no. 1, pp. 125-138, 2018.

[28] A. Le Hoang and E. Fehling, "Effect of steel fiber on the behavior of circular steel tube confined UHPC columns under axial loading," in International

54

Conference on Strain-Hardening Cement-Based Composites, 2017, pp. 482-

491: Springer.

[29] J. Y. R. Liew, M. Xiong, and D. Xiong, "Design of Concrete Filled Tubular Beam-columns with High Strength Steel and Concrete," (in e), Structures, vol. 8, pp. 213-226, 2016/11/01/ 2016.

[30] F. Endo et al., "Advanced technologies applied at the new “Techno Station” building in Tokyo, Japan," (in e), Structural engineering international, vol. 21, no. 4, pp. 508-513, 2011.

[31] T. T. Hoan, "Nghiên cứu ứng dụng một số cơng cụ kiểm thử cĩ ứng dụng trí tuệ

nhân tạo," Ths, Trường đại học cơng nghệ - Đại học quốc gia Hà Nội, 2020.

[32] C. P. Hùng, "Nghiên cứu nhận dạng khuơn mặt xây dựng hệ thống phục vụ

điểm danh," Ths, Đại Học Đà Nẵng, 2016.

[33] T. A. Nguyễn and H. B. Lý, "Ứng dụng các mơ hình học máy dựa trên thuật tốn cây để giải bài tốn dự báo sức kháng cắt của dầm BTCT khơng cốt đai," (in v), Tạp chí điện tử Khoa học và Cơng nghệ Giao thơng, pp. 1-12, 2021. [34] Q.-V. Vu, V.-H. Truong, and H.-T. Thai, "Machine learning-based prediction of

CFST columns using gradient tree boosting algorithm," (in e), Composite Structures, vol. 259, p. 113505, 2021/03/01/ 2021.

[35] B. L. Hải and A. N. Thùy, "Nghiên cứu ứng dụng mơ hình trí tuệ nhân tạo dự báo cường độ nén của bê tơng sử dụng cốt liệu tái chế," (in V), Tạp chí Khoa học Giao thơng vận tải, vol. 72, no. 3, pp. 369-383, 2021.

[36] A. Cascardi, F. Micelli, and M. A. Aiello, "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns," (in e), Engineering Structures, vol. 140, pp. 199-208, 2017. [37] M. Ahmadi, H. Naderpour, and A. Kheyroddin, "Utilization of artificial neural

networks to prediction of the capacity of CCFT short columns subject to short term axial load," (in e), Archives of civil and mechanical engineering, vol. 14, no. 3, pp. 510-517, 2014.

[38] M. R. Khosravani, S. Nasiri, D. Anders, and K. Weinberg, "Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach," (in e), Advances in Engineering Software, vol. 127, pp. 51-58, 2019.

[39] M. R. Khosravani, S. Nasiri, D. Anders, and Weinberg, "Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach," (in e), Advances in Engineering Software, vol. 127, pp. 51-58, 2019. [40] A. M. Al-Khaleefi, M. J. Terro, A. P. Alex, and Y. Wang, "Prediction of fire

resistance of concrete filled tubular steel columns using neural networks," (in e), Fire Safety Journal, vol. 37, no. 4, pp. 339-352, 2002.

[41] H. Naderpour, A. H. Rafiean, and P. Fakharian, "Compressive strength prediction of environmentally friendly concrete using artificial neural networks," (in e), Journal of Building Engineering, vol. 16, pp. 213-219, 2018/03/01/ 2018.

[42] Y. Zhu, X. Weiyi, G. Luo, H. Wang, J. Yang, and W. Lu, "Random Forest enhancement using improved Artificial Fish Swarm for the medial knee contact force prediction," (in e), Artificial intelligence in medicine, vol. 103, p. 101811, 2020.

55

[43] P.-j. Chun, I. Ujike, K. Mishima, M. Kusumoto, and S. Okazaki, "Random Forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results," (in e), Construction and Building Materials, vol. 253, p. 119238, 2020.

[44] A.-D. Pham, N.-T. Ngo, T. T. H. Truong, N.-T. Huynh, and Truong, "Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability," (in e), Journal of Cleaner Production,

vol. 260, p. 121082, 2020.

[45] J. H. Friedman, "Stochastic gradient boosting," (in e), Computational statistics & data analysis, vol. 38, no. 4, pp. 367-378, 2002.

[46] V. Q. Trần and Q. H. Nguyễn, "Ứng dụng mơ hình rừng cây ngẫu nhiên để dự đốn cường độ chịu nén của bê tơng," (in v), Tạp chí khoa học và cơng nghệ thủy lợi 2020.

[47] B. Dai, C. Gu, E. Zhao, and X. Qin, "Statistical model optimized random forest regression model for concrete dam deformation monitoring," (in e), Structural Control and Health Monitoring, vol. 25, no. 6, p. e2170, 2018.

[48] A.-D. Pham, N.-T. Ngo, and T.-K. Nguyen, "Machine learning for predicting long-term deflections in reinforce concrete flexural structures," (in e), Journal of Computational Design and Engineering, vol. 7, no. 1, pp. 95-106, 2020.

[49] J.-S. Chou, N.-T. Ngo, and A.-D. Pham, "Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression," (in e), Journal of Computing in Civil Engineering, vol. 30, no. 1, p. 04015002, 2016.

[50] Y.-A. Hsieh and Y. J. Tsai, "Machine learning for crack detection: review and model performance comparison," (in e), Journal of Computing in Civil Engineering, vol. 34, no. 5, p. 04020038, 2020.

[51] A. Chong, W. Xu, S. Chao, and N.-T. Ngo, "Continuous-time Bayesian calibration of energy models using BIM and energy data," (in e), Energy and Buildings, vol. 194, pp. 177-190, 2019.

[52] Z. Fan, R. Chiong, Z. Hu, and Y. Lin, "A fuzzy weighted relative error support vector machine for reverse prediction of concrete components," (in e),

Computers & Structures, vol. 230, p. 106171, 2020.

[53] J.-S. Chou and N.-T. Ngo, "Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system," (in e), Neural Computing and Applications, vol. 30, no. 7, pp. 2129-2144, 2018.

[54] A.-D. Pham, N.-T. Ngo, Q.-T. Nguyen, and N.-S. Truong, "Hybrid machine learning for predicting strength of sustainable concrete," (in e), Soft Comput.,

vol. 24, no. 19, pp. 14965-14980, 2020.

[55] A. H. Le, F. Ekkehard, D.-K. Thai, and C. V. Nguyen, "Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns," (in e),

Steel Compos Struct, vol. 29, no. 1, pp. 125-138, 2018.

[56] V.-H. Truong, Q.-V. Vu, H.-T. Thai, and M.-H. Ha, "A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm," (in e), Advances in Engineering Software, vol. 147, p. 102825, 2020/09/01/ 2020. [57] S. Jegadesh and S. Jayalekshmi, "Application of artificial neural network for

56

(in e), International Journal of Earth Sciences and Engineering, vol. 8, pp. 35- 42, 2015.

[58] J. Liu, "Neural networks method applied to the property study of steel-concrete composite columns under axial compression," (in e), International Journal on Smart Sensing & Intelligent Systems, vol. 6, no. 2, 2013.

[59] N.-T. Ngo, H. A. Le, and V.-V. Huynh, "Machine Learning Models for Inferring the Axial Strength in Short Concrete-Filled Steel Tube Columns Infilled with Various Strength Concrete," (in e), Engineering Journal, vol. 25, no. 7, pp. 135-145, 2021 https://www.bradford.ac.uk/sustainable- environments/asccs/columns-database/.

[60] M. Ahmadi, H. Naderpour, and A. Kheyroddin, "ANN model for predicting the compressive strength of circular steel-confined concrete," (in e), International Journal of Civil Engineering, vol. 15, no. 2, pp. 213-221, 2017.

[61] K. Kalita, P. Dey, S. Haldar, and X.-Z. Gao, "Optimizing frequencies of skew composite laminates with metaheuristic algorithms," (in e), Engineering with Computers, vol. 36, no. 2, pp. 741-761, 2020.

[62] Y. Du, Z. Chen, C. Zhang, and X. Cao, "Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks," (in e), Frontiers of Computer Science, vol. 11, no. 5, pp. 863-873, 2017.

[63] V.-L. Tran, D.-K. Thai, and S.-E. Kim, "Application of ANN in predicting ACC of SCFST column," (in e), Composite Structures, vol. 228, p. 111332, 2019/11/15/ 2019.

[64] V.-L. Tran, D.-K. Thai, and D.-D. Nguyen, "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete," (in e), Thin-Walled Structures, vol. 151, p. 106720, 2020/06/01/ 2020.

[65] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794.

[66] V.-L. Tran, D.-K. Thai, and S.-E. Kim, "Application of ANN in predicting ACC of SCFST column," (in e), Composite Structures, vol. 228, 2019.

[67] N. T. A. Lý Hải Bằng, "Nghiên cứu dự báo sức chịu tải tới hạn của cấu kiện cột ống thép nhồi bê tơng cĩ tiết diện hình chữ nhật bằng mạng nơ ron nhân tạo," (in v), Tạp chí Khoa học Giao thơng Vận tải, vol. 71, no. 2, pp. 154-166, 2021. [68] Specification for structural steel buildings, 2010.

[69] E. Frank et al., "Weka 3-Data Mining with Open Source Machine Learning Software in Java," (in e), The University of Waikato, 2000.

[70] L. Breiman, "Random forests," (in e), Machine learning, vol. 45, no. 1, pp. 5-

32, 2001.

[71] X. Qiu, L. Zhang, P. N. Suganthan, and G. A. Amaratunga, "Oblique random forest ensemble via least square estimation for time series forecasting," (in e),

Information Sciences, vol. 420, pp. 249-262, 2017.

[72] M. W. Ahmad, M. Mourshed, and Y. Rezgui, "Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption," (in e), Energy and Buildings, vol. 147, pp. 77-89, 2017.

57

[73] M. K. Mayilvaganan and K. Naidu, "Application of artificial neural network for the prediction of groundwater level in hard rock region," in International Conference on Computational Science, Engineering and Information Technology, 2011, pp. 673-682: Springer.

[74] M. Abambres and A. Ferreira, "Application of ANN in pavement engineering: state-of-art," (in e), 2017.

[75] J. A. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. P. Vandewalle, Least squares support vector machines. World scientific, 2002. [76] A. M. Abd and S. M. Abd, "Modelling the strength of lightweight foamed

concrete using support vector machine (SVM)," (in e), Case Studies in Construction Materials, vol. 6, pp. 8-15, 2017/06/01/ 2017.

[77] S. Haykin, "Neural Networks: A Comprehensive FoundationPrentice," ed: Hall PTR, 1998.

58

PHỤ LỤC

Bảng dữ liệu các thuộc tính của cột CFST, gồm 802 bộ dữ liệu được thu thập từ hiệp hội kết cấu thép - bê tơng và từ các nguồn mở.

STT Tác giả kính cột Đường D (mm) Độ dày ống thép t (mm) Ứng suất chảy thép y f (N/mm2) Cường độ bê tơng c f (N/mm2) Chiều dài cột L (mm) Tỷ lệ D t Khả năng chịu nén của cột u N (KN) 1 Gardner (1998) 300,00 3,00 274,40 9,90 1000 100,00 2636 2 720,00 8,30 312,00 15,00 2160 86,75 15000 3 1020,00 9,64 336,00 16,90 3060 105,81 30000 4 131,76 2,38 235,00 17,40 264 55,36 535 5 101,80 2,94 320,00 18,00 200 34,63 628 6 101,80 5,70 305,00 18,00 200 17,86 954 7 100,00 0,52 244,00 18,00 200 192,31 239 8 168,80 2,64 302,40 18,20 305 63,94 1326 9 105,00 2,06 264,90 18,40 310 50,97 539 10 105,10 2,85 264,90 18,40 310 36,88 550 11 107,90 4,32 264,90 18,40 310 24,98 686 12 Tsuji 1991 107,90 4,32 264,90 18,40 424 24,98 727 13 107,90 4,32 264,90 18,40 424 24,98 734 14 Sakino 1991 107,90 4,32 264,90 18,40 424 24,98 803 15 153,90 1,80 356,10 18,40 470 85,50 981 16 154,20 2,65 356,10 18,40 470 58,19 1294 17 158,70 0,90 221,00 18,70 450 176,33 700

Một phần của tài liệu Ứng dụng mô hình học máy trong dự đoán khả năng chịu nén của cột ống thép nhồi bê tông (Trang 61 - 100)

Tải bản đầy đủ (PDF)

(100 trang)