vri hai phii.
d;1',ti:L'#,'luret m6i'ilia va hai phia.
;F,,t".,'','i,tf ,ffi ';iij:il{ll,lffij{l}tvards'l(zn2)
l.fii"iffi
ff5fi*p,''fgn-fr* rr ft r,;nT;r,,iff ]n ,,,
3.1. So sanh hai mdu,ilQc tQp vdi gid thuyit hai phrong sai khdc nhau
u,ro" ruilonr
trudng hqp m6u bd vd t6i tra, if,r*g-.ui-#;ffi thi tinh toiin theo c6c
a. Cdc budrc thuc hi6n:
Chgn Data >Da,a Anqlvsis
.>^, t_Test: Treo_Sqmple Assuming (.lnequal variances,
,uong tu nhu mttc 3.J, iin lu.ot tri lsl cac muc sarr:
.i, ..i,ilx';""#:1?]e I Range: Midn vio cria biiin I tfc Ia mian chfa s5 ticu, k6 ca tcn ddns
,a, or;r'illt Variable 2 Range: Midn vio cria mau quan s{t thrt hai kd ca t€n ddng rtiu cria
- [abels: Ndu dua th€m ddng diu vA t6n bi6n rhi chqn muc ndv.
- Hypothesized means dirreiencs.Ga ih,y6,;;t6 ;;i",iJ,i, u*r, cria hai t6ng thC.
"u" uu, lli!,li'0.''' thuviit H6: ',=,n, rr'r eii 6; ii,';il;'ffi;:T fi,, mr=mz*d (d ra r sd
- Output Range: Chon midn tr6ng d6 dua ktit qui ra.
Vi dg 9: Thuc hidn thi nehi€m do chidu ddi crla 2 gi5ng
c6 x.vd y. Vdi gi6ng cri x ldy m6u do
,,!^:::^?lr:Sllg.1a
f r{i 1a, oe rz "",.a, "?Ji?,,i;i;i #'
sg sent,chiAu Jai cua i gi6",
"a - ,a
x 15 t7 20 23 25 l7 l8 22 24 22
vl t4 l2(lt l3 28 t2 t7 25 24 21 23 30
ro sq bang nhau c{a hai phuong sai, thuc hen-ihio muc 1.2.1, ta c6 k6t
K6t luan: P one-tait < 0.05 n6n bric bo Hp,
ch6p nh6n H1 tf,c li hai phuong sai khric nhau. ,nl*|u" r, Kidm dinh su bing nhau cria hai rrung binh vd.i
gid thuycl hai phuorg sai khdc
,'i',137,?ri?::,: Anob)sir -- t'rest Two-s,mpte Assuntins Lrnequat variances, khai bdo
9{1l ,j, l<! ra qhu trsns muc 3.3 d rr€n.
fii:$f#"J" ITit :t'i,;ily^,i1,,t , ,t*", cf,iq l,,r.n d mrlc j nghi 0.05 do
P ha i ph ia 16 n hon m ric r nJhia ;"= ;;;l*:illX:ffi Jiffi ,Tf_f*"#i::l;1:
nhu sau:
Biri tflp chuong 4
Bdi l: Ph6n tich phuong sai mQt nhan t5 cho bing dt tiQu sau. So. sdnh trung binh cta c6cI I
I s 2s4 304 3ol 281 I
lc 260 zs2 261 21t 260 . zsr
I
I p 2s'J 24t 26t 232 2s7 240 |
Bdi 2: Thi nghi€m b6 tri hoan toen ng6u nhi6n tr€n 5 lo?i thi'c en{ A, B,C, D, E )
thu duoc ndns suat t6m tr€n cric 0 thl nshiem nhu sau:
254 21 B 27C 27E 32D 264
208 254 234 208' 29D 21 E.
22C 208 26E 23C 24C 24E
30D 238 25C 32D 21 A 29D
22E 28D 238 25E 24E 23A
cho bi€t inh huons crla huong cdc loai thric Io4i in tdineng t6m. nhu
sudt
tric cho bins ilfi li6u sau. t1 -
Hav
Bdi 3: Phan tich Dhuons sai hai nhan
KI K2 K3 K4 GI c2 G3 G4 G5 41.8 46.9 4s.4 44.1 53.7 50.3 50.6 48 46.7 42 42.4 40.1 48 47 45.9 4s.1 41.8 40 41 41.6
Bdi 4: PhAn tich phuong sai hai nhin t6 tuong tric cho bAng dnt0 t0
liQu sau. So sdnh trung binh
ti12 ( B1,82, B3).
cta c6c c6ns thuc thudc nhdn t0 2 ( B
AIA2 A2 BI 82 B3 24. t 25.8 2'7 28.4 29.7 30.1 z'1.4 28.'t 30.4 32 27 3u,'7 46.7 59.4 34.4 45.4 s0.'1 14 47.t 64.5 11 461 60.1
Bhi 6: Luong chdt trong m{u cia 12 con lgn truttc vi sau khi diiu tri cho troog beng
sau:
ludn hudng tn rong lgn.
I{ay
x 75 90 85 65 60 65 100 60 85 85 65
90 105 85 100 90 105 80 55 105 105 80
k€t ludn v6 inh i tdi mau
fll=Ti:::: m6u dQc rgp rohg c{c phin a,b,c, d, e sau triy: triy: I i I 52