SUBROUTINE NxN(A.X.B,N)
DIMENSIĨN A(4,4).XÍ4),B(4)
C All A12 ... AIN I Bl C
c c c
C ANl AN2 ... ANN | BN DO 100 IHANG =1.N
C
- ^^ DO 201 K = 1,N DO 201 K = 1,N IFÍK.EQ.IHANG) GOTO 201 TGl=AÍK,IHANG) B(K) = BÍK)-B(IHANG)*TG1 DO 202 NI = 1 .N
AÍK.NI) = AÍK.NI) - AÍIHANG.NI) *TG] 202 C 201 C 100 CONTIN CONTINUÉ CONTINUÉ DO 400 IHANG = 1, N X(IHANG) = BíIHANG) 400 CONTINUÉ END
1^^
KET QUA GIAI HE PHUONG TRINH TUYJRN^TlNjí
TRAN HE SO 2.150 2.150 .035 -2.079 .035 .035 2.150 .035 -2.079 -2.079 .305 2.150 .035 .035 -2.079 .035 2.150 \ TRAN G 2.610 . 150 -2.770 .150 .150 2.610 .150 -2.770 -2.770 .150 2.610 .150 .150 -2,770 .150 2.610
TRUONG HOP THU MA TRAN D
1.000 1 .000 1.000 1.000
DIEM SO NGHIEM THEO D H T BINH NGHIEM GIAI TICH - . 0 0 6 1 . 9 8 9 - . 0 0 6 1 . 9 8 9 . 0 0 0 2 . 0 0 0 . 0 0 0 2 . 0 0 0
TRUONG HOP THU MA TRAN D
2.000 2.000 2.000 2.000
DIEM SO NGHIEM THEO D H T BINH NGHIEM GIAI TICH 0.978 3.008 0.978 3.008 1 .000 3.000 1.000 3.000
f ^?3 -
TRUONG HOP THU 3 MA TRAN D
3.000 3.000 3.000 3.000
DIEM SO NGHIEM THEO D H T BINH NGHIEM GIAI TICH 1 . 9 8 9 4 . 0 1 1 1 . 9 8 9 4 . 0 1 1 2 . 0 0 0 4 . 0 0 0 2 . 0 0 0 4 . 0 0 0
^
- 74 -
TAI LIEU TEM KHAO
/ " I _ 7 EpeóóHH K, Tejuiec. H . , Bpoydeji. Merojiti rpaHatiHHx sjteMeHTOB '^ííocKsa" 1987. sjteMeHTOB '^ííocKsa" 1987.
Z"2_7 rojQTHOB C.K., pfíóeHBKHđ H.íí., pasHOCTHHe cxe™ "HayKa" M.I972. M.I972.
/ " 3 _ / Map^K r . H . , MaTeMaTH^cKoe.MOBejijapoBaHEie B npoóJieMe OKpyxameft cpejis. ^'HayKa". M.I982. OKpyxameft cpejis. ^'HayKa". M.I982.
/*4_7 iVÍap^K r . K . . MeTOí^ BH^CJiHTejTBHOfí MaTeMaT2K2 "HayKa", HOBOCHĨRípCK. 1973. HOBOCHĨRípCK. 1973.
/ " 5 _ 7 lanEiseHCKaH O.A,, KpaejBHe s a j í a s ífeteMaTü^cKoS ^nsKKii, '"Hayxa", M., 1973. '"Hayxa", M., 1973.
¿"5_7 JlKiiiKO H.ií., BewT;iKOírBaHHEKO II.M. napHK B,I!., 'JacrenKHS r . S . , MeTo;i MaxopaHTHHx Jiacri B TGOPÍÜB lajiBTpaiiM. r . S . , MeTo;i MaxopaHTHHx Jiacri B TGOPÍÜB lajiBTpaiiM.
"HayKCBa ;iyMKa^ Kaes 1974.
/ " 7 _ 7 CaiviapcKafi A.A. TeopHH pasHOCTHHx cxeM M.I977.
/ " 8 _ 7 HEGHKO H.H,, MeTOfl apoóHHx maroB penreHH£ MHoroMepHHi aasaq MaTeuaTJaqecKOfi áiHsaKE, "HayKa" SocoMíapcK, aasaq MaTeuaTJaqecKOfi áiHsaKE, "HayKa" SocoMíapcK, 1967.
L^J Manolis G.D, and Beslcos D.E. , Dynamic s t r e s s comcentre-
t i o a a t u d i e s by boucdary i a t e g r a l s and laplace t r a n s -f o m , I n t . J.Numerical r.!ethod. 1981. f o m , I n t . J.Numerical r.!ethod. 1981.
/ " 1 0 7 Le Dinh Binh. An a p p l i c a t i o n of average deriyetives i n sorae Boundar:;" - valué pir^blems, the 4 congresa i n sorae Boundar:;" - valué pir^blems, the 4 congresa of Vietnamese methemeticiaos Eeooi, September 4-7, 1990 ( A b s t r a c t s ) .
/~11^7 Le Dicii Dioh, An e p p l i c a t i o a of average derivatives i n compártemental raodels. S c i e n t i f i c confereace, Paculty i n compártemental raodels. S c i e n t i f i c confereace, Paculty of Mathematics, Mechanics and informática. 5tate Uoiver-
- 75 -
/"12_7 Phan Van Hjip, L e Dinh I ^ a h . The A.D method f o r the
aPprorLmate s o l u t i o n of some boundary probleme, "Demonstatio i i a t h e m á t i c a " T/arsi^wa I I / I 5 9 3 ,
/ ' 1 3 _ 7 Phan Van Hap, Le Dinh Dj.nh. D^o heni t r u n g b i n h va áng dung cua no.
Tap c h i Xhoa hoc, DHTH, K°, 4-1990, t r . 34-42.
Í'^^J P h a n Váa Hpp, L e i ¿ n h DJ.nh. D90 ham t r u n g binh vói
các phü'cng t n n h co hp so g i a n dopn.
Tgp c h i Ichoa h o c , DHTK, :i° 1 . - 1 9 9 2 , t r . 1 - 5 .
¿"15^7 Phan Vau Hpp, Le i ¿ n h 'DLvJa, Phan Huy T h i e a . Cae phux3*ng
pháp chon tham sé t b i iru. H9Í ngh}. V^t l y l y t b u y e t l a n thií 3f t h á n g 3 / 1 9 8 8 .