Ảnh hưởng của các hạt nanocomposite đến sự biến đổi hóa học của lớp phủ
“Để xác định định lượng các biến đổi hóa học của q trình lão hóa thời tiết, luận
án tiến hành phân tích phổ hồng ngoại [137] [152] [138]. Lớp phủ dùng nhựa acrylic
nhũ tương AC 261 được nghiên cứu vai trò bảo vệ quang bằng cách đối chứng hai mẫu: một mẫu không thêm nanocomposite CPS88 và một mẫu chứa 2 % nanocomposite
CPS88. Hình 3.63 và 3.64 trình bày phổ hồng ngoại của các lớp phủ trước và sau 48
chu kỳ thử nghiệm thời tiết gia tốc.”Các tín hiệu đặc trưng cho lớp phủ được tổng hợp lại trong Bảng 3.30
Hình 3.63: Phổ hồng ngoại của lớp
phủ acrylic khơng chứa hạt silica nanocomposite trước và sau 48 chu kỳ
Hình 3.64: Phổ hồng ngoại của lớp phủ acrylic chứa 2% hạt CPS88 trước và sau
48 chu kỳ thử nghiệm thời tiết gia tốc
thử nghiệm thời tiết gia tốc
Bảng 3.30: Bảng tóm tắt dao động đặc trưng của lớp phủ acrylic không chứa và có chứa 2% hạt CPS88
“Từ các Hình 3.63, 3.64 và Bảng 3.30 cho thấy có sự thay đổi cường độ hấp thụ
các vân phổ đặc trưng cho các nhóm chức trong lớp phủ. Vân phổ tại số sóng 2946 cm–
đặc trưng cho các nhóm C–H alkane giảm mạnh. Tín hiệu đặc trưng cho các nhóm chức CO và C–O– tại số sóng 1730 và 1150 cm–1 thay đổi khơng rõ ràng, trong khi đó các nhóm chức OH có các peak hấp thụ hồng ngoại trong khoảng 3520–3440 cm–1 giảm.
Vì vậy lựa chọn nhóm C–H alkane để nghiên cứu ảnh hưởng của hạt CPS88 đến sự biến đổi của lớp phủ do sự giảm cường độ có quy luật rõ ràng nhất.”
“Ảnh hưởng của các hạt nanocomposite CPS88 đến sự thay đổi hàm lượng nhóm
chức CH2 trong q trình thử nghiệm thời tiết gia tốc được trình bày trên hình 3.65.”
“Từ đồ thị Hình 3.65 cho thấy hàm lượng nhóm chức CH2 trong cả hai mẫu luôn
giảm theo thời gian thử nghiệm. Sau 48 chu kỳ thử nghiệm, trong lớp phủ không chứa hạt nanocomposite CPS88 hàm lượng nhóm CH2 cịn lại khoảng 85 % , hàm lượng nhóm CH2 cịn lại khoảng 89 % đối với lớp phủ chứa 2 % hạt nanocomposite CPS88. Như vậy khi thêm 2 % hạt nanocomposite CPS88, hàm lượng nhóm CH2 cịn lại nhiều hơn 4 % so với lớp phủ chứa khơng hạt nanocomposite, nhóm CH2 suy giảm ít hơn. Điều này chứng tỏ các hạt nanocomposite CPS88 đã làm tăng độ bền thời tiết cho lớp phủ.”
–1 (cm ) Cường độ Sự thay đổi 1 3550–3443
ν của nhóm O–H alcohol, acid, nhóm OH trên bề mặt hạt silica và H2O Yếu Giảm 2 2960–2850 ν của C–H trong nhóm CH3, CH2 Mạnh Giảm mạnh
3 1730 ν của C=O ether Mạnh Không rõ
ràng
4 1450 δ của C–H trong nhóm
CH3,CH2 Mạnh Giảm
5 1387 δ của C–H trong nhóm CH3 Trung
bình Giảm
6 1250–1165 ν của C–O–trong nhóm este Mạnh Khơng rõ ràng
Hình 3.65: Ảnh hưởng của các hạt nanocomposite CPS88 đến sự thay đổi nhóm chức CH2 trong q trình thử nghiệm thời tiết gia tốc
“Các hạt nano SiO2 hấp thụ tia tử ngoại trong vùng bước sóng ngắn (240–280
nm), đo đó có thể đóng vai trị như phụ gia bảo vệ quang, cải thiện độ bền thời tiết cho chất nền polymer đã được báo cáo trong một số cơng trình cơng bố [137], [138] [153].
Dưới tác động của các yếu tố thời tiết gia tốc (bức xạ tử ngoại, oxy, độ ẩm, nước ngưng và nhiệt) đã xảy ra các phản ứng phân hủy quang, oxy hóa quang và thủy phân [138],
[152] làm đứt mạch các liên kết và tạo thành các hợp chất với khối lượng nhỏ như CH4, các aldehyde, rượu, vv. Các hợp chất thấp phân tử này có thể thoát ra khỏi lớp phủ bằng
cách bay hơi hoặc bị rửa trôi trong qua giai đoạn ngưng nước. Trong trường hợp mẫu thêm các hạt nanocomposite CPS88 nhờ sự có mặt của các poly–5–(benzo[d]thiazol–2–
yl)–2–(thiophen–3–yl)benzo[d]oxazol, các hạt CPS88 hấp thụ ánh sáng trong vùng bước sóng rộng hơn (từ 230–380 nm) so với nano SiO2. Điều này giúp cho chất nền polymer
acrylic AC 261 được bảo vệ quang”ở vùng bước sóng rộng hơn, giảm thiểu sự tác động của yếu tố thời tiết nên lớp phủ ít biến đổi hơn.
Hình thái cấu trúc của lớp phủ trước và sau thử nghiệm thời tiết gia tốc
“Từ Hình 3.66 ta thấy sau 48 chu kỳ thử nghiệm thời tiết gia tốc lớp phủ trên cơ
sở nhựa acrylic nhũ tương AC 261 không chứa hạt nanocomposite CPS88 bị biến dạng phồng rộp và tạo thành các hố trong khi lớp phủ chứa 2 % hạt nanocomposite khơng có
sự thay đổi nhiều, chỉ bị bào mòn bề mặt chút ít, làm lộ ra các hạt nanocomposite nhiều hơn.”
Hình 3.66: Ảnh FE–SEM của lớp phủ không chứa và chứa 2 % hạt
*Kết luận:
Đã tổng hợp được 19 dẫn xuất của polythiophene P70–P88, trong đó có 18 dẫn xuất
mới của polythiophene (chưa có trong tài liệu tham khảo) từ P70–P87
TT Kí hiệu Cơng thức λmax hấp thụ (nm) λemis huỳnh quang (nm) ○ T polymer phân hủy mạnh 0 nhất ( C) σ (S/cm) 1 P70 490 – 467 – 2 P71 484 645 482 – 3 P72 – 652 493 –8 5,95×10 4 P73 459 – 494 – 5 P74 – 549 477 –8 3,89×10 6 P75 – 604 494 – 7 P76 – 649 519 –8 9,77×10 8 P77 – 650 499 –8 1,77×10 9 P78 395 550 527 –
10 P79 406 505 431 –8 2,35×10 11 P80 463 527 516 –6 1,29×10 12 P81 431 516 590 –7 1,84×10 13 P82 385 536 510 – 14 P83 392 546 551 – 15 P84 395 549 466 –7 1,98×10 16 P85 406 646 591 – 17 P86 481 520 297 –
“Tính tan của các polymer được khảo sát trong các dung môi phổ biến là CHCl3,
DMSO, THF và CH2Cl2. Có 3 polymer có khả năng tan tốt trong dung môi CHCl3 là
P72, P80 và P81 và 1 polymer tan tốt trong dung môi DMSO là P76. Điều này tạo thuận
lợi cho việc xác định cấu trúc của polymer thu được cũng như nghiên cứu tính chất ứng dụng của polymer, làm tiền đề cho việc gia công và ứng dụng chúng trong thực tế.”
“18 polymer đều có nhóm thế ở vị trí số 3 của vịng thiophene làm cải thiện cấu
trúc bất bão hòa của polymer, từ đó tăng khả năng hịa tan, độ bền nhiệt và độ dẫn
điện”của polymer. Hiệu suất tổng hợp của polymer khá tốt, trong khoảng 60–70 %,
polymer thu được ở dạng bột, có màu từ đỏ đến đỏ sẫm đặc trưng cho mạch polythiophene.
“Cấu trúc của các polymer được xác định dựa vào các phép đo: phổ hồng ngoại”
IR, phổ cộng hưởng từ hạt nhân NMR, phổ Raman và phổ hấp thụ UV–Vis. Dựa vào phổ IR, phổ Raman và 1H–NMR xác định được các polymer tạo thành có cấu trúc giống
như dự kiến. Phổ hấp thụ UV–Vis cho thấy các polymer đều hấp thụ ở bước sóng 459–
644 nm, “đặc trưng cho sự chuyển trạng thái π → π* của mạch liên hợp polythiophene và hấp thụ ở vùng tử ngoại gần đặc trưng cho sự chuyển trạng thái n → π*. Trong đó
P78–P85 hấp thụ ở bước sóng trên 500 nm.”
“Hình thái, tính chất của các polymer được nghiên cứu thông qua ảnh SEM, phổ
huỳnh quang, phép phân tích nhiệt TGA và độ dẫn điện.”
Ảnh SEM cho thấy polymer thu được có dạng bột hoặc lá với kích thước tương đối đồng đều, phân tán tốt.
“Các polymer đều có độ bền tốt trong mơi trường khơng khí ở khoảng 424–590”
o
18 P87 466 515 424 –8
8,34×10
19 P88 497 516 510 –7
4,70×10
P82, P83, P85, P88 có nhiệt phân hủy trên 500oC, riêng P81 có nhiệt phân hủy cao
nhất ở 590oC.
“Các polymer đều phát quang trong vùng ánh sáng từ đỏ da cam đến đỏ (515–
652 nm), riêng P87 phát quang ở vùng ánh sáng màu lục.”
Độ dẫn điện của các polymer đo được đều cao hơn nhiều lần polythiophene chưa
pha tạp. P76, P80, P81, P84, P88 có độ dẫn điện cao gấp hơn 10-100 lần, đặc biệt P80
có độ dẫn điện cao gấp 100 lần so với polythiophene chưa pha tạp.
Đã tổng hợp được 3 nanocomposite và nghiên cứu hiệu quả ổn định quang của màng sơn chứa 2% CPS88, tạo tiền đề cho việc ứng dụng nanocomposite này trong chế
Chương 4. KẾT LUẬN
1. “Đã tổng hợp được 19 monomer là dẫn xuất của thiophene, trong đó có 15 dẫn xuất mới (chưa có trong tài liệu tham khảo) có mạch nhánh ở vị trí số 3 của dị vòng
thiophene.” Các dẫn xuất đều là chất rắn, cấu trúc của các dẫn xuất đã được xác định dựa vào các phương pháp vật lí hiện đại. Mười lăm dẫn xuất mới bao gồm: – 6 dẫn xuất 71, 73–77 chứa nhóm α,β–ketone khơng no, nhiệt độ nóng chảy từ 80- 125oC
– 8 dẫn xuất 78–85 chứa dị vòng pyrazoline, nhiệt độ nóng chảy từ 185-210oC. – 1 dẫn xuất 87 chứa dị vòng benzo[d]thiazole được tổng hợp từ 3–
thiophenecarbaldehyde trong lò vi sóng ở cơng suất 400W, nhiệt độ nóng chảy 197oC
2. “Đã sử dụng phương pháp polymer hóa hóa học trong mơi trường khí N2, xúc tác FeCl3 trong dung mơi CHCl3 để tổng hợp 19 polymer, trong đó có 18 dẫn xuất mới của polythiophene P70 - P87 từ các monomer là dẫn xuất của thiophene chứa nhóm thế ở
vị trí số 3. Xác định cấu trúc của 19 polymer này bằng phương pháp vật lý hiện đại như phổ hồng ngoại, phổ Raman, phổ cộng hưởng từ hạt nhân và phổ hấp thụ UV. Mười
chín polymer bao gồm:”
– 8 dẫn xuất của polythiophene từ 3–thiophenecarbaldehyde và dẫn xuất của acetophenone P70–P77.
– 8 dẫn xuất của polythiophene chứa dị vịng pyrazoline, trong đó P78–P81 từ phenylhydrazine và P82–P85 từ thiosemicarbazide.
– 3 dẫn xuất chứa dị vòng benzo[d]thiazole từ 3–thiophenecarbaldehyde P86–P88.
3. Các polymer thu được đều ở dạng bột có màu“đỏ đậm đặc trưng của polythiophene, kích thước hạt đồng đều, phân tán tương đối tốt. Có 3 polymer có khả năng tan tốt trong dung mơi”CHCl3 là P72, P80 và P81 và 1 polymer tan tốt trong dung mơi DMSO là
P76.
4. “Các polymer có độ bền trong mơi trường khơng khí khá tốt, nhiệt độ bắt đầu phân hủy đều trên 200oC. Hầu hết các polymer đều phát quang ở vùng ánh sáng đỏ đến cam. Độ dẫn điện của các polymer khi chưa pha tạp đều rất tốt, gấp từ 10-100 lần so với polythiophene hoặc poly(3–hexylthiophene) khi chưa pha tạp, tạo điều kiện thuận lợi cho việc chế tạo siêu tụ.”
5. Đã tổng hợp được 3 nanocomposite và nghiên cứu hiệu quả ổn định quang của màng sơn chứa CPS88, tạo tiền đề cho việc ứng dụng nanocomposite này trong chế tạo màng mỏng che chắn UV.
DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ
1. Trung Vu Quoc, Duong Tran Thi Thuy, Thuan Dang Thanh, Thanh Phung Ngoc, Vuong Nguyen Thien, Chinh Nguyen Thuy, and Luc Van Meervelt (2019). Some chalcones
derived from thiophene–3–carbaldehyde: synthesis and crystal structures. Acta Crystallographica Section E, E75(7), 957–963.
2. Trung Vu Quoc, Duong Tran Thi Thuy,Thanh Phung Ngoc, Manh Vu Quoc, Hien Nguyen, Linh Duong Khanh, Anh Tu Quang and Luc Van Meervelt (2019). Synthesis,
crystal structure and Hirshfeld surface analysis of diethyl 2,6–dimethyl–4–(thiophen– 3–yl)– 1,4–dihydropyridine–3,5–dicarboxylate, Acta Crystallographica Section E, E75,
1861–1865.
3. Nguyen Ngoc Linh, Tran Thi Thuy Duong, Nguyen Hien, Vu Quoc Trung
(2020). Synthesis of polythiophene containing heterocycle on the side chain: A Review, Vietnam Journal of Chemistry, 58(1), 1–9.
4. Vu, Q.–T.; Tran, T.–T.–D.; Nguyen, T.–C.; Nguyen, T.V.; Nguyen, H.; Vinh, P.V.; Nguyen–Trong, D.; Dinh Duc, N.; Nguyen–Tri, P. (2020). DFT Prediction of Factors
Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymes. Polymers, 12, 1207.
5. Trung Vu Quoc, Dai Do Ba, Duong Tran Thi Thuy, Linh Nguyen Ngoc,Chinh Nguyen Thuy, Huong Vu Thi, Linh Duong Khanh, Oanh Doan Thi Yen, Hoang Thai, Van Cao Long, Stefan Talu, and Dung Nguyen Trong (2021). DFT study on some
polythiophenes containing benzo[d]thiazole and benzo[d]oxazole: structure and band gap. Designed monomers and polymers, vol.24, no.1, 274–284.
6. Vu Quoc Trung, Tran Thi Thuy Duong, Nguyen Thi Dua, Nguyen Ngoc Linh, Lai Dang Cuong, Dao Phuong Thao, Vo Khac Huy, Nguyen Hoang Ha Phuong, Nguyen Hien, Duong Khanh Linh, Vu Quoc Manh, Nguyen Thuy Chinh, Thai Hoang, Luc Van Meervelt (2022). Synthesis and characterization of some novel polythiophene derivatives containing
pyrazoline, Designed monomers and polymers, vol.25, no.1, 136-147.
7. Tran Thi Thuy Duong, Nguyen Thi Dua, Nguyen Ngoc Linh, Le Thi Nguyet, Le Thi Minh Tuyet, Nguyen Hien, Duong Khanh Linh, Ha Manh Hung, Nguyen Thuy Chinh, Doan Thi Yen Oanh, Vu Thi Ngoc Oanh, Hoang Thu Ha and Vu Quoc Trung (2022).
Synthesize and characteristics of some new polythiophene containing α, β–unsaturated carbonyl groups, Vietnam Journal of Chemistry (đã đăng online).
8. Tran Thi Thuy Duong, Nguyen Ngoc Linh, Vu Quoc Manh, Hoang Thi Thu Hien, Do Ba Dai, Nguyen Hien, Nguyen Thuy Chinh, Duong Khanh Linh, Ha Manh Hung, Le Minh Duc, Thai Hoang, Doan Thi Yen Oanh and Vu Quoc Trung (2022). Synthesis and
properties of some polythiophenes containing benzo[d]thiazole heterocycle, VNU
Journal of Science: Natural Sciences and Technology (đã submit). 9. Vũ Quốc Trung, , Phùng Ngọc Thành, Nguyễn Thúy Chinh,
Đường Khánh Linh, Thái Hoàng, Nguyễn Thiên Vương, Hà Mạnh Hùng, Quy trình tổng
hợp dẫn xuất thiophen–pyrazolin, VN patent (Bằng sáng chế số 23980, kí ngày
29/07/2021 của Cục sở hữu trí tuệ).
10. Vũ Quốc Trung, Nguyễn Thiên Vương, , Nguyễn Thúy Chinh,
Nguyễn Thị Loan, Lã Triều Dương, Đường Khánh Linh, Lê Trọng Lư, Vũ Quốc Mạnh, Vũ Huyền Diệu My, Nguyễn Ngọc Linh, Quy trình sản xuất vật liệu silica nanocomposit để làm phụ gia ổn định quang, Giải pháp hữu ích (đã chấp nhận đơn hợp lệ ngày 15/09/2020).