Được đề xuất từ năm 1960 bởi giáo sư Kalman để thu thập và kết hợp linh động
các thông tin từ cảm biến thành phần. Một khi phương trình định hướng và mẫu thống kê nhiễu trên mỗi cảm biến được biết và xác định, bộ lọc Kalman sẽ cho ước lượng giá trị tối ưu (chính xác do đã được loại sai số, nhiễu) như là đang sử dụng một tín hiệu 'tinh khiết' và có độ phân bổ không đổi. Trong hệ thống này, tín hiệu cảm biến vào bộ lọc gồm hai tín hiệu: từ cảm biến góc (inclinometer) và cảm biến vận tốc góc (gyro). Tín hiệu ngõ ra của bộ lọc là tín hiệu của inclinometer và
gyro đã được loại nhiễu nhờ hai nguồn tín hiệu hỗ trợ và xử lý lẫn nhau trong bộ lọc, thông qua quan hệ (vận tốc góc = đạo hàm/vi phân của giá trị góc)
Bô lọc Kalman đơn giản là thuật toán xử lý dữ liệu hồi quy tối ưu. Có nhiều cách xác định tối ưu, phụ thuộc tiêu chuẩn lựa chọn trình thông số đánh giá. Nó cho thấy rằng bộ lọc Kalman tối ưu đối với chi tiết cụ thể trong bất kỳ tiêu chuẩn có nghĩa nào. Một khía cạnh của sự tối ưu này là bộ lọc Kalman hợp nhất tất cả thông tin được cung cấp tới nó. Nó xử lý tất cả giá trị sẵn có, ngoại trừ độ sai số, ước lượng giá trị hiện thời của những giá trị quan tâm, với cách sử dụng hiểu biết động học thiết bị giá trị và hệ thống, mô tả số liệu thống kê của hệ thống nhiễu, gồm nhiễu ồn, nhiễu đo và sự không chắc chắn trong mô hình động học, và những thông tin bất kỳ về điều kiện ban đầu của giá trị quan tâm.
Hình 2. 2: Tín hiệu thu đã lọc qua Kalman.
Hình 2. 3: Sơ đồ bộ lọc Kalman.
Hình trên mô hình hóa hoạt động của mạch lọc Kalman. Chúng ta có tín hiệu đo được, chúng ta có mô hình của tín hiệu đo được (đòi hỏi tuyến tính) và sau đó là áp dụng vào trong hệ thống phương trình của mạch lọc để ước lượng trạng thái quan tâm. Thực ra tín hiệu đo là không khó, phương trình đã có sắn, cái chung ta cần chính là mô hình hoá hệ thống. Để có thể ứng dụng một cách
hiểu quả mạch lọc Kalman thì chúng ta phải mô hình hóa được một cách tuyến tính sự thay đổi của trạng thái cần ước lượng (estimate) hoặc ước đoán (predict).
2.2.2. QUY TRÌNH ƯỚC LƯỢNG.
Kalman filter định vị vấn đề chung nhằm ước lượng giá trị xℜn của tiến trình kiểm soát thời gian gián đoạn biểu diễn bằng phương trình tuyến stochastic khác nhau:
(1) (2.1)
với giá trị zℜm :
(2) (2.2)
Trong đó w và v là 2 vector biến ngẫu nhiên đại diện cho nhiễu hệ thông và nhiễu đo đạc. 2 biến ngãy nhiên này độc lập và được giả sử là tuân theo phân bố Gauss với trung bình =0 và ma trận hiệp biến (covariance) lần lượt là Q và R
w ~N(0,Q) (2.3)
v ~N(0,R) (2.4)
Nếu vector trạng thái x có kích thước là n, thì ma trận A sẽ có kích thước là n x n. B (n x l) là ma trận phụ thuộc vào điều khiển tối ưu u với u là vector có kích thước là l. Vector đo đạc z có kích thước là m nên ma trận H sẽ là m x n. Chú ý rằng các ma trận Q, R, A, H có thể thay đổi theo thời gian (từng bước k), nhưng ở đây chùng được giả sử không đổi.