Hướng phát triển

Một phần của tài liệu Cải tiến tính chất điện của vật liệu sắt điện truyền thống bằng ống nano cacbon đa vách dạng thường và dạng oxi hóa (Trang 71 - 78)

Trước hết, cần chế tạo cảm biến mẫu sử dụng vật liệu nanocomposite trên nền tảng TGS và ống nano cacbon đa vách dạng oxi hóa để đánh giá hiệu quả hoạt động của nó so với các cảm biến sẵn có trên thị trường.

Thứ hai, cần tiếp tục nghiên cứu để giảm hệ số tổn hao của vật liệu trong điều kiện độ ẩm cao. Điều này rất thiết thực đối với khí hậu của Việt nam. Để thực hiện điều này, việc lựa chọn các hạt nano vừa có tính cách điện vừa kỵ nước để bổ sung vào vật liệu có thể là một giải pháp hiệu quả.

63

DANH MỤC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA HỌC VIÊN

Nguyễn Hoài Thương và Hà Văn Đại. “Kết quả nghiên cứu bước đầu về ảnh hưởng của sóng siêu âm lên tính chất điện của vật liệu nanocomposit sắt điện,” Tạp chí Khoa học và Công nghệ - IUH. Số Đặc biệt Hội Nghị50, tập 02, trang 50-55, 2021.

64

TÀI LIỆU THAM KHẢO

[1] G. Tan et al. “Diode-like rectification characteristics of BiFeO3-based

/Zn1-xNixFe2O4 bilayered films for application of ferroelectric field effect transistors,” J. Alloys Compd. Vol. 851, pp.156-818, 2021. [2] Y.-P. Jiang et al. “Layer-dependent solvent vapor annealing on stacked

ferroelectric P(VDF-TrFE) copolymers for highly efficient nanogenerator applications,” Polymer. Vol. 204, pp. 122-822, 2020. [3] Z. L. Wang et al. “Progress in nanogenerators for portable electronics,”

Mater. Today. Vol. 15, pp.532-543, 2012.

[4] W. Gao et al. “A review of flexible perovskite oxide ferroelectric films and their application,” J. Materiomics. Vol. 6, pp. 1-16, 2020.

[5] Y. Chen et al. “Ferroelectric domain dynamics and stability in graphene Oxide-P(VDF-TrFE) multilayer films for ultra-high-density memory application,” Carbon. Vol. 144, pp. 15-23, 2019.

[6] S. Ishaq et al. “Enhancement of dielectric and ferroelectric properties in flexible polymer for energy storage applications,” Ceramic International. Vol. 46, no. 15, pp. 24649-24660, 2020.

[7] M. S. Alkathy et al. “Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3

ferroelectric ceramics by transition metals doping for photovoltaic applications,” Mater. Chem. Phys. Vol. 257, pp. 123791, 2021.

[8] A. Debnath et al. “Effect of non-mesogenic chiral terphenylate on the

formulation of room temperature ferroelectric liquid crystal mixtures suitable for display applications,” J. Mol. Liq. Vol. 292, pp. 111317,

2019.

[9] S. Salaeh et al. “Highly enhanced electrical and mechanical properties

of methyl methacrylate modified natural rubber filled with multiwalled carbon nanotubes,” Polym. Test. Vol. 85, pp. 106417, 2020.

[10] N. George et al. “Nanosilica decorated multiwalled carbon nanotubes

(CS hybrids) in natural rubber latex,” Polymer. Vol. 161, pp. 170-180,

65

[11] J. H. Kwak et al. “Dielectric relaxation properties of PbTiO3-

multiwalled carbon nanotube composites prepared by a sol–gel process,” Ceramic International. Vol. 42, pp. 8165-8169, 2016.

[12] M. Nadafan et al. “Evaluation of structural, optical and dielectric

properties of MWCNT-BaTiO3/silica ceramic nanocomposites,”

Ceramic International. Vol. 46, pp. 12243-12248, 2020.

[13] A. Cacciotti et al. “Design and development of advanced

BaTiO3/MWCNTs/ PVDF multi-layered systems for microwave applications,” Compos. Struct. Vol. 224, pp. 111075, 2019.

[14] A. Pal et al. “Enhancement in energy storage and piezoelectric

performance of three phase (PZT/MWCNT/PVDF) composite,” Mater.

Chem. Phys. Vol. 244, pp. 122639, 2020.

[15] Ashok K. Batra et al. “Growth and characterizat ion of doped DTGS

crystals for infrared sensing devices,” Material letters. Vol. 57, pp. 3943-3948, 2003.

[16] Nguyen, H.T et al. “Dielectric Properties of Composites Based on

Nanocrystalline Cellulose and Triglycine Sulfate,” Ferroelectrics. Vol.

469, no. 1, pp.116-119, 2014

[17] Nguyen, H.T et al. “Influence of silicon dioxide nanoparticles on

dielectric relaxation of triglycine sulfate,” Ferroelectrics. Vol. 559, pp.

141-149, 2020.

[18] A. V. Solnyshkin et al. “Dielectric properties of composite materials

based on P(VDF-TrFE) copolymer and deuterated triglicyne sulfate crystal,” Functional Materials Letters. Vol. 12, pp. 1950048, 2019. [19] F. Khanum and J. Podder, “Crystallization and Characterization of

Triglycine Sulfate(TGS) Crystal Doped with NiSO4," Journal of Crystallization Process and Technology. Vol. 1 No. 3, pp. 49-54,2011.

[20] Jirí Zelinka et al. “Growth of Triglycine Sulfate Single Crystals Doped

with Pt(IV) and l-Alanin,” Crystal Growth & Design. Vol. 3.No. 3, pp. 393-395, 2003.

[21] Ashok K. Batra et al. “Studies of electrical conduction in pyroelectric

DTGS: PVDF composites,” Organic Photonic Materials and Devices VI. Vol. 5351, 2004.

66

[22] Nadezhda Popravko et al. “Influence of Depolarizing Fields and

Screening Effects on Phase Transitions in Ferroelectric Composites,”

Materials. Vol. 11, No.1, pp. 85, 2018.

[23] K. L. Bye et al. “High Internal Bias Fields in TGS (L-Alanine),” Ferroelectrics. Vol. 4, pp. 253-256, 1972.

[24] Methods in Enzymology. “Triglycine Sulfate.” Internet: https://www.sciencedirect.com/topics/biochemistry-genetics-and-

molecular-biology/triglycine-sulfate.html, 2021.

[25] Robu.in. “IR Sensor Working and Applications.” Internet: https://robu.in/ir-sensor-working/.html, May 19, 2020.

[26] T. Mikolajick et al. ”Next generation ferroelectric materials for

semiconductor process integration and their applications,” Journal of Applied Physics. Vol. 129, no. 21, pp. 4-6, 2001

[27] T. Mikolajick et al. “Next generation ferroelectric materials for

semiconductor process integration and their applications,” Journal of Applied Physics. Vol. 129, no. 21, pp. 11-22, 2001.

[28] Akira Tada 1 et al. “Tailoring organic heterojunction interfaces in

bilayer polymer photovoltaic devices,” Nat Mater. Vol. 40, pp. 450, 2011.

[29] M. Kang et al. “organic nano-floating-gate memory: effects of metal

nanoparticles and blocking dielectrics on memory characteristics,” Adv. Funct. Mater. Vol. 23, no. 28, pp. 3503-3512, 2013.

[30] M.R. Lukatskaya et al. “Multidimensional materials and device architectures for future hybrid energy storage,” Nature. Communications. Vol. 7, pp.12647, 2016.

[31] R. Sharma et al. “magnetic and electrical properties of

zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue,” Physica B: Condens. Matter. Vol. 414, pp. 83-90, 2013.

[32] J.Y. Patil et al. “Combustion synthesis of magnesium ferrite as liquid

petroleum gas sensor effect of sintering temperature,” Curr. Appl. Phys. Vol. 12, no. 1, pp. 319-324, 2012.

67

[33] Wikipedia. “Nano Carbon tube.” Internet:

https://en.wikipedia.org/wiki/Carbon_nanotube.html, 2012. [34] Merck. “IKA@R C-MAG HS hot plate stirrers.” Internet:

https://www.sigmaaldrich.com/catalog/product/aldrich/z671789?lang=e n&region=VN&gclid=CjwKCAjw7diEBhB-EiwAskVi1-

4aql2FqMH4sKk0m7VoGqEC6fZGwLanGxdNBWje5Cq0fxd7yOPeP hoCj30QAvD_BwE, 10/2021.

[35] Sonicator. “Q700- Sonicator 700 watts with touch screen control.” Internet: https://www.sonicator.com/products/q700-sonicator, 02/2022 [36] Ametek. “1260A-Frequency Response Analyzer.” Internet:

https://www.ameteksi.com/products/frequency-response- analyzers/1260a-impedance-gain-phase-analyzer, 11/2021.

[37] Nguyen, H.T and Phan Thi Bich Thao. “Preparation, composition, phase transition and electrical conductivity of two novel ferroelectric composites from Rochelle salt filled with pristine and oxidized MWCNT,” Ferroelectrics. Vol. 585, no. 1, pp. 274-283, 2021.

[38] J. Tao and S. Cao. “Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes,” RSC Adv. Vol. 10, pp. 10799, 2020.

[39] N. Sinh et al. “Performance of crystal violet doped triglycine sulfate single

crystals for optical and communication applications,” CrystEngComm. Vol. 17, no. 30, pp. 5757, 2015.

[40] Nguyen, H.T et al. “Dielectric properties of an eco-friendly ferroelectric nanocomposite from cellulose nanoparticles mixed with Rochelle salt,”

Ferroelectrics. Vol. 560, pp. 27-32, 2020.

[41] Nguyen, H.T et al. “Effects of composition ratio on structure and phase transition of ferroelectric nanocomposites from silicon dioxide nanoparticles and triglycine sulfate,” Phase Transitions. Vol. 92, pp.

563-570, 2019.

[42] M. Trainer, “Ferroelectrics and the Curie-Weiss law,” European Journal of Physics. Vol. 21, pp. 459-464, 2000.

68

[43] Chen Jiao Huang et al. “Variation of ferroelectric hysteresis loop with

temperature in (SrxBa1−x) Nb2O6 unfilled tungsten bronze ceramics,”

Journal of Materiomics. Vol. 1, no. 2, pp. 146-152, 2015.

[44] Nguyen, H.T et al. “Dielectric properties of ferroelectric

nanocomposites of nanocrystalline cellulose and sodium nitrite,” Appl Nanosci. Vol. 10, pp. 499–506, 2020.

[45] Nguyen, H.T et al. “Influence of silicon dioxide nanoparticles on

dielectric relaxation of triglycine sulfate,” Ferroelectrics. Vol. 559, no.

1, pp. 141-149, 2020.

[46] Nguyen, H.T et al. “Electrophysical properties of matrix composites

nanocrystalline cellulose – triglycine sulfate,” Ferroelectrics. Vol. 512, no. 1, pp. 71-76, 2017.

[47] B. M. Greenhoe, et al. “Universal power law behavior of the AC

conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks,” Journal of Polymer Science Part B: Polymer Physics. Vol. 54, pp. 1918-1923, 2016.

[48] H. Neumann and G. Arlt, “Maxwell-wagner relaxation and degradation of SrTiO3 and BaTiO3 ceramics,” Ferroelectrics. Vol. 69, no. 1, pp.

179-186, 1986.

[49] Nguyen, H.T et al. “Effects of Carbonization on Electrophysical

Properties of Cellulose-Based Nanocomposites with Triglycine Sulfate,” Materials Transactions. Vol. 61, no. 8, pp. 1580-1588, 2020. [50] A. K. Jonscher. “Dielectric relaxation in solids,” Journal of Physics D

Applied Physics. Vol. 32, pp. 57-70, 1999.

[51] F. Tian and Y. Ohki. "Electric modulus powerful tool for analyzing dielectric behavior," IEEE Transactions on Dielectrics and Electrical Insulation. Vol. 21, no. 3, pp. 929-931, 2014.

69

Một phần của tài liệu Cải tiến tính chất điện của vật liệu sắt điện truyền thống bằng ống nano cacbon đa vách dạng thường và dạng oxi hóa (Trang 71 - 78)

Tải bản đầy đủ (PDF)

(106 trang)