Hƣớng nghiên cứu mở rộng

Một phần của tài liệu (LUẬN văn THẠC sĩ) mối quan hệ giữa tỷ giá hối đoái và các nhân tố chính sách tiền tệ ở một số nước châu á (Trang 70 - 91)

CHƢƠNG 5 : KẾT LUẬN

5.3 Hƣớng nghiên cứu mở rộng

Vai trò của nghiên cứu thực nghiệm khu vực châu Á ngày càng đóng vai trị quan trọng, với sự chuyển dịch từ Châu Âu sang Châu Á của kinh tế thế giới. Việc hoàn thiện bài nghiên cứu về mặt dữ liệu cập nhật thêm sau này cũng nhƣ hoàn thiện những hạn chế nêu trên là một hƣớng mở rộng khả thi.

Do nội dung nghiên cứu trong các giai đoạn khác nhau trƣớc và sau khủng hoảng kinh tế thế giới 2008, có thể sử dụng các mơ hình phi tuyến nhằm ƣớc lƣợng sự thay đổi về mặt cấu trúc trƣớc và sau khủng hoảng có tác động tới sự khác nhau về mối quạn hệ các yếu tố tiền tệ và tỷ giá hay khơng. Mơ hình có thể đƣợc sử dụng kiểm soát đứt gãy trong mối quan hệ các biến là Threshold đƣợc phát triển bởi Hansen (1999).

DANH MỤC TÀI LIỆU THAM KHẢO

TÀI LIỆU THAM KHẢO TIẾNG VIỆT

Nguyễn Văn Ngọc, 2013. Bài giảng kinh tế vĩ mô: NXB Đại học kinh tế quốc dân. Nguyễn Văn Tiến , 2000. Tài Chính Quốc Tế Hiện Đại trong Nền Kinh Tế Mở. Hà Nội : NXB Thống Kê.

Nguyễn Văn Tiến, 2010. Giáo trình tài chính quốc tế . Hà Nội : NXB Thống Kê.

Trần Hồng Ngân, 2012. Giáo trình thanh tốn quốc tế. TP.HCM: Trƣờng Đại học kinh tế TP.HCM.

Trần Ngọc Thơ – Nguyễn Ngọc Định, 2013. Tài chính quốc tế. TP.HCM: Trƣờng Đại học kinh tế TP.HCM.

TÀI LIỆU THAM KHẢO TIẾNG ANH

Annual report on Exchange arrangement and Exchange restriction 2012 (IMF)

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The review of economic studies, 58(2), 277-297.

Bai, J., & Kao, C. (2006). On the estimation and inference of a panel cointegration model with cross-sectional dependence. contributions to Economic Analysis, 274, 3- 30.

Baltagi, B. H., & Hashem Pesaran, M. (2007). Heterogeneity and cross section dependence in panel data models: theory and applications introduction. Journal of Applied Econometrics, 22(2), 229-232.

Banerjee, A., Marcellino, M., & Osbat, C. (2005). Testing for PPP: Should we use panel methods?. Empirical Economics, 30(1), 77-91.

Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.

Breitung, J., & Pesaran, M. H. (2008). Unit roots and cointegration in panels(pp. 279- 322). Springer Berlin Heidelberg.

Cerra, V., & Saxena, S. C. (2010). The monetary model strikes back: Evidence from the world. Journal of International Economics, 81(2), 184-196.

Clements, K. W., & Frenkel, J. A. (1980). Exchange rates, money, and relative prices: the dollar-pound in the 1920s. Journal of International Economics, 10(2), 249-262. Crespo‐Cuaresma, J., Fidrmuc, J., & MacDonald, R. (2005). The monetary approach to exchange rates in the CEECs1. Economics of Transition, 13(2), 395-416.

Cushman, D. O. (2000). The failure of the monetary exchange rate model for the Canadian‐US dollar. Canadian Journal of Economics/Revue canadienne d'économique, 33(3), 591-603.

Dąbrowski, M. A., Papież, M., & Śmiech, S. (2013). Monetary Exchange Rate Model for the Central European Countries–Evidence from a Panel Approach.Proceedings of the 7th International Days of Statistics and Economics, 289-299.

Dąbrowski, M. A., Papież, M., & Śmiech, S. (2014). Exchange rates and monetary fundamentals in CEE countries: Evidence from a panel approach.Journal of Macroeconomics, 41, 148-159.

Engel, C., Mark, N. C., & West, K. D. (2007). Exchange rate models are not as bad as you think (No. w13318). National Bureau of Economic Research.

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.

Flood, R. P., & Rose, A. K. (1999). Understanding exchange rate volatility without the contrivance of macroeconomics. The Economic Journal, 109(459), 660-672.

Frenkel, J. A. (1976). A monetary approach to the exchange rate: doctrinal aspects and empirical evidence. the scandinavian Journal of economics, 200-224.

Groen, J.J.(2000). The monetary exchange rate model as a long-run phenomenon. Journal of International Economics, 52(2), 299-319

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74..

Kao, C., & Chiang, M. H. (1999). On the estimation and inference of a cointegrated regression in panel data. Available at SSRN 1807931.

Krugman, P. (1989). Exchange Rate Instability MIT Press. Cambridge Massachusetts. Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24

MacDonald, R., & Taylor, M. P. (1994). The monetary model of the exchange rate: long-run relationships, short-run dynamics and how to beat a random walk.Journal of international Money and finance, 13(3), 276-290.

Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and statistics,61(S1), 631- 652

Mark, N. C., & Sul, D. (2001). Nominal exchange rates and monetary fundamentals: evidence from a small post-Bretton Woods panel. Journal of International Economics, 53(1), 29-52.

Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample?. Journal of international economics,14(1), 3-24.

Mussa, M. (1976). Adaptive and regressive expectations in a rational model of the inflationary process. Journal of Monetary Economics, 1(4), 423-442.

Pedroni, P. (2000). FULLY MODIFIED OLS FOR HETEROGENEOUS COINTEGRATED PANELS.

Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and statistics,61(s 1), 653-670. Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621-634.

Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The Econometrics Journal, 11(1), 105-127.

Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Perron, P. (1988). Trends and random walks in macroeconomic time series: Further evidence from a new approach. Journal of economic dynamics and control, 12(2), 297- 332.

Rapach, D. E., & Wohar, M. E. (2002). Testing the monetary model of exchange rate determination: new evidence from a century of data. Journal of International Economics, 58(2), 359-385.

Sarno, L., Valente, G., & Wohar, M. E. (2004). Monetary fundamentals and exchange rate dynamics under different nominal regimes. Economic Inquiry,42(2), 179-193. Sarno, L., & Taylor, M. P. (2002). The economics of exchange rates. Cambridge University Press

Uz, I., & Ketenci, N. (2010). Exchange rate determination: monetary approach in the new EU members and Turkey. Applied Economics Letters, 17(10), 963-967.

PHỤ LỤC

Phụ lục 1: Thống kê mô tả

Phụ lục 2: Kiểm định tương quan chéo

Biến phụ thuộc S Biến phụ thuộc Mr Biến phụ thuộc Yr xr 175 .0039826 .2627889 -.3928977 .6969534 yr 175 -.00399 1.576124 -1.303744 3.846561 mr 175 .0058305 3.300649 -4.167629 7.387649 s 175 4.578254 .1357059 4.202165 4.887172 Variable Obs Mean Std. Dev. Min Max

*two-sided test LM CD* 1.027 0.3044 LM adj* 4.394 0.0000 LM 34.52 0.0318 Test Statistic p-value

Bias-adjusted LM test of error cross-section independence

LM CD* 1.003 0.3160

LM adj* 4.671 0.0000 LM 34.84 0.0294

Test Statistic p-value

Biến phụ thuộc Xr Phụ lục 3 : Kiểm định tính dừng Bậc gốc Biến S Biến Mr *two-sided test LM CD* .4714 0.6373 LM adj* 18.51 0.0000 LM 70.22 0.0000 Test Statistic p-value

Bias-adjusted LM test of error cross-section independence

*two-sided test LM CD* -.5488 0.5831 LM adj* 1.801 0.0718 LM 27.6 0.1519 Test Statistic p-value

Bias-adjusted LM test of error cross-section independence

-1.524 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,25)

Dynamics: lags criterion decision General to Particular based on F joint test Deterministics chosen: constant

Biến Yr Biến Xr Sai phân bậc 1 Biến dS -1.937 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,25)

Dynamics: lags criterion decision General to Particular based on F joint test Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for mr

0.322 -2.100 -2.220 -2.440 CIPS* cv10 cv5 cv1 CIPS test, N,T = (7,25)

Individual ti were truncated during the aggregation process

Dynamics: lags criterion decision General to Particular based on F joint test Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for yr

-1.386 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,25)

Dynamics: lags criterion decision General to Particular based on F joint test Deterministics chosen: constant

Biến dMr Biến dYr Biến dXr -3.794 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for ds . xtcips ds, maxlags(1) bglags(1) q

-3.407 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for dmr

-4.089 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for dxr

-4.019 -2.120 -2.250 -2.510 CIPS cv10 cv5 cv1 CIPS test, N,T = (7,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Phụ lục 4: Ma trận tương quan

Phụ lục 5 : Nhân tử phóng đại phương sai VIF

xr 0.3078 0.2606 -0.3236 1.0000 yr -0.0871 0.7700 1.0000 mr 0.1469 1.0000 s 1.0000 s mr yr xr Mean VIF 7.12 xr 3.89 0.257040 mr 8.56 0.116891 yr 8.91 0.112277 Variable VIF 1/VIF . vif . _cons 4.577898 .0097064 471.64 0.000 4.558738 4.597058 xr .0237358 .0730477 0.32 0.746 -.1204556 .1679272 yr -.0372335 .0184281 -2.02 0.045 -.0736093 -.0008577 mr .019236 .0086243 2.23 0.027 .0022121 .0362598 s Coef. Std. Err. t P>|t| [95% Conf. Interval] Total 3.20440054 174 .018416095 Root MSE = .12838 Adj R-squared = 0.1051 Residual 2.81821708 171 .016480802 R-squared = 0.1205 Model .386183456 3 .128727819 Prob > F = 0.0001 F( 3, 171) = 7.81 Source SS df MS Number of obs = 175

Phụ lục 6: Kiểm định đồng liên kết

Pedroni Residual Cointegration Test Series: S MR YR XR

Sample: 1991 2015 Included observations: 175 Cross-sections included: 7 Null Hypothesis: No cointegration Trend assumption: No deterministic trend

Automatic lag length selection based on AIC with a max lag of 4 Newey-West automatic bandwidth selection and Bartlett kernel Alternative hypothesis: common AR coefs. (within-dimension)

Weighted

Statistic Prob. Statistic Prob.

Panel v-Statistic 2.539024 0.0056 2.495978 0.0063

Panel rho-Statistic -0.513900 0.3037 -0.890303 0.1867

Panel PP-Statistic -1.781290 0.0374 -2.249784 0.0122

Panel ADF-Statistic -3.329490 0.0004 -2.448134 0.0072

Alternative hypothesis: individual AR coefs. (between-dimension) Statistic Prob.

Group rho-Statistic -0.202115 0.4199

Group PP-Statistic -2.368563 0.0089

Group ADF-Statistic -4.196498 0.0000

Cross section specific results

Phillips-Peron results (non-parametric)

Cross ID AR(1) Variance HAC Bandwidth Obs

1 0.385 0.006008 0.006349 2.00 24 2 0.273 0.001850 0.001850 0.00 24 3 0.620 0.004555 0.005831 1.00 24 4 0.492 0.001109 0.001120 1.00 24 5 0.061 0.001498 0.001627 1.00 24 6 -0.015 0.000817 0.000817 0.00 24 7 0.493 0.003288 0.003494 1.00 24

Augmented Dickey-Fuller results (parametric)

Cross ID AR(1) Variance Lag Max lag Obs

1 -0.249 0.004003 2 4 22 2 0.273 0.001850 0 4 24 3 0.234 0.002340 2 4 22 4 0.492 0.001109 0 4 24 5 -1.648 0.000902 4 4 20 6 -0.455 0.000672 2 4 22 7 0.493 0.003288 0 4 24

Kao Residual Cointegration Test Series: S MR YR XR

Sample: 1991 2015 Included observations: 175 Null Hypothesis: No cointegration Trend assumption: No deterministic trend

Automatic lag length selection based on AIC with a max lag of 5 Newey-West automatic bandwidth selection and Bartlett kernel

t-Statistic Prob.

ADF -2.605391 0.0046

Residual variance 0.003758

HAC variance 0.004247

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID)

Method: Least Squares Date: 07/10/16 Time: 17:17 Sample (adjusted): 1993 2015

Included observations: 161 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

RESID(-1) -0.217132 0.041907 -5.181308 0.0000

D(RESID(-1)) 0.356300 0.075482 4.720348 0.0000

R-squared 0.189276 Mean dependent var 3.84E-05

Adjusted R-squared 0.184177 S.D. dependent var 0.061405

S.E. of regression 0.055463 Akaike info criterion -2.933865

Sum squared resid 0.489103 Schwarz criterion -2.895587

Log likelihood 238.1761 Hannan-Quinn criter. -2.918322

Durbin-Watson stat 1.976064

Phụ lục 7: Kết quả hồi quy FMOLS

Dependent Variable: S

Method: Panel Fully Modified Least Squares (FMOLS) Sample (adjusted): 1992 2015

Periods included: 24 Cross-sections included: 7

First-stage residuals use heterogeneous long-run coefficients Coefficient covariance computed using default method

Long-run covariance estimates (Bohman kernel, User bandwidth = 1.0000)

Variable Coefficient Std. Error t-Statistic Prob.

MR -0.034292 0.016000 -2.143190 0.0336

YR 0.088048 0.034334 2.564482 0.0112

XR 0.704683 0.134200 5.251000 0.0000

R-squared -1133.705885 Mean dependent var 4.577856

Adjusted R-squared -1147.459896 S.D. dependent var 0.136319

S.E. of regression 4.619719 Sum squared resid 3521.398

Long-run variance 0.052015

Phụ lục 8: Kết quả hồi quy Granger Test (khơng có biến giả)

Biến phụ thuộc DS Prob > chi2 = 0.0000 chi2( 1) = 52.62 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.1576 chi2( 2) = 3.70 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.4384 chi2( 2) = 1.65 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.0705 chi2( 2) = 5.31 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr

Biến phụ thuộc DMr

Biến phụ thuộc Dyr

Prob > chi2 = 0.0787 chi2( 1) = 3.09 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.5491 chi2( 2) = 1.20 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.0001 chi2( 2) = 18.29 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.0160 chi2( 2) = 8.27 ( 2) L2.ds = 0 ( 1) L.ds = 0 . test l.ds l2.ds . Prob > chi2 = 0.3214 chi2( 1) = 0.98 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.0660 chi2( 2) = 5.44 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.2225 chi2( 2) = 3.01 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr . Prob > chi2 = 0.0292 chi2( 2) = 7.07 ( 2) L2.ds = 0 ( 1) L.ds = 0 . test l.ds l2.ds

Biến phụ thuộc DXr

Phụ lục 9: Kết quả hồi quy Granger Test có biến giả khủng hoảng

Biến phụ thuộc DS Prob > chi2 = 0.2937 chi2( 1) = 1.10 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.1892 chi2( 2) = 3.33 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.0002 chi2( 2) = 17.35 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr . Prob > chi2 = 0.8085 chi2( 2) = 0.43 ( 2) L2.ds = 0 ( 1) L.ds = 0 . test l.ds l2.ds Prob > chi2 = 0.0007 chi2( 1) = 11.47 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.1544 chi2( 2) = 3.74 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.6776 chi2( 2) = 0.78 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.0843 chi2( 2) = 4.95 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr

Biến phụ thuộc DMr

Biến phụ thuộc DYr

Prob > chi2 = 0.7012 chi2( 1) = 0.15 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.5809 chi2( 2) = 1.09 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.0007 chi2( 2) = 14.66 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.9612 chi2( 2) = 0.08 ( 2) L2.ds = 0 ( 1) L.ds = 0 . test l.ds l2.ds Prob > chi2 = 0.3497 chi2( 1) = 0.87 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.3771 chi2( 2) = 1.95 ( 2) L2.dxr = 0 ( 1) L.dxr = 0 . test l.dxr l2.dxr . Prob > chi2 = 0.2260 chi2( 2) = 2.97 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr . Prob > chi2 = 0.0345 chi2( 2) = 6.73 ( 2) L2.ds = 0 ( 1) L.ds = 0 . test l.ds l2.ds

Biến phụ thuộc DXr

Phụ lục 10: Kết quả hồi quy FMOLS trường hợp bổ sung dữ liệu ở Việt Nam

Dependent Variable: S

Method: Panel Fully Modified Least Squares (FMOLS) Sample (adjusted): 1992 2014

Periods included: 23 Cross-sections included: 8

Total panel (balanced) observations: 184 Panel method: Pooled estimation Cointegrating equation deterministics: C

Coefficient covariance computed using default method

Long-run covariance estimates (Bartlett kernel, Newey-West fixed bandwidth)

Variable Coefficient Std. Error t-Statistic Prob.

Prob > chi2 = 0.3013 chi2( 1) = 1.07 ( 1) L.ecm = 0 . test l.ecm . Prob > chi2 = 0.0886 chi2( 2) = 4.85 ( 2) L2.dyr = 0 ( 1) L.dyr = 0 . test l.dyr l2.dyr . Prob > chi2 = 0.0003 chi2( 2) = 16.49 ( 2) L2.dmr = 0 ( 1) L.dmr = 0 . test l.dmr l2.dmr

Một phần của tài liệu (LUẬN văn THẠC sĩ) mối quan hệ giữa tỷ giá hối đoái và các nhân tố chính sách tiền tệ ở một số nước châu á (Trang 70 - 91)

Tải bản đầy đủ (PDF)

(91 trang)