HƢỚNG MỞ RỘNG ĐỀ TÀI

Một phần của tài liệu (LUẬN văn THẠC sĩ) mối quan hệ giữa tăng trưởng kinh tế, tiêu thụ điện, lượng khí thải CO2 và phát triển tài chính ở các quốc gia khu vực châu á – thái bình dương (Trang 58 - 77)

CHƢƠNG 5 KẾT LUẬN

5.4. HƢỚNG MỞ RỘNG ĐỀ TÀI

Nhu cầu năng lƣợng của một quốc gia, một khu vực cũng giống nhƣ nhu cầu dinh dƣỡng của con ngƣời. Nền kinh tế khơng thể vận hành nếu khơng có năng lƣợng. Tuy nhiên, mặt trái của nhu cầu năng lƣợng ngày càng tăng cao là những ảnh hƣởng nặng nề đến tài ngun và mơi trƣờng sống. Do đó, nghiên cứu các mối quan hệ giữa lƣợng khí thải CO2, tăng trƣởng kinh tế, tiêu thụ điện năng và phát triển tài chính có ý nghĩa thiết thực đến mỗi quốc gia và khu vực cần đƣợc nghiên cứu trong tƣơng lai. Ngoài các yếu tố trên, các nhà nghiên cứu có thể mở rộng mơ hình bằng việc thêm vào các biến khác nhƣ thƣơng mại, dân số, năng lƣợng tái tạo… Và việc nghiên cứu mối quan hệ phi tuyến giữa phát triển tài chính và CO2 cũng là các hƣớng mở rộng khả thi.

TÀI LIỆU THAM KHẢO Danh mục tài liệu Tiếng Việt

Trƣơng Thị Minh An, Kiều Thị Hịa, 2010. Tìm hiểu về carbon footprint và áp

dụng tính carbon footprint cho lụa Mã Châu, Quảng Nam. Tuyển tập Báo cáo Hội

nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010, 406- 407

Danh mục tài liệu Tiếng Anh

Ang, J.B., 2007. CO2 emissions, energy consumption, and output in France.

Energy Policy, 5: 4772–4778.

Anis Omri, 2013. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Economics, 40: 657-664

Apergis, N., Payne, J.E., 2009. CO2 emissions, energy usage and output in Central America. Energy Policy, 37: 3282–3286.

Arouri MEH, Youssef AB, Mhenni H, Rault C, 2012. Energy consumption,

economic growth and CO2 emissions in Middle East and North African countries.

Energy Policy, 45: 342–9.

Asteriou D, 2009. Foreign aid and economic growth: new evidence from a panel data approach for five South Asian countries. J Policy Model, 31: 155–61.

Badi H. Baltagi, 2008. Forecasting with panel data. Journal of Forecasting,

27: 153-173

Baltagi, B.H., Demetriades, P.O., Law, S.L, 2009. Financial development and

openness: evidence from panel dat. Journal of Development Economics, 89: 285-

296.

Bernanke B, 1986. Alternative explanations of the money-income correlation.

Carnegie-Rochester conference series on public policy, 25:49–99.

Boutabba MA, 2014. The impact of financial development, income, energy

and trade on carbon emissions: evidence from the Indian economy. Econ Model,

40: 33–41.

C. Kao, M.H. Chiang, 2000. On the estimation and inference of a cointegrated regression in panel data. Advances in Econometrics, 15: 179–222.

Chor Foon Tang, Salah Abosedra, 2014. The impacts of tourism, energy consumption and political instability on economic growth in the MENA countries.

Energy Policy, 68: 458–464.

Drukker, D. M, 2003. Testing for serial correlation in linear panel data

models. The Stata Journal, 2: 168-177.

Engle, R.F. & Granger, C., 1987. Co-intergraion and error correction Representation, Estimation, and Testing. Economotrica, 55: 251-277

Greene, W. H., 2000. Econometrics Analysis. New York University, Prentice

Hsiao-Tien Pao, Chung-Ming Tsai, 2010. CO2 emissions, energy consumption

and economic growth in BRIC countries. Energy Policy, 38: 7850-7860

Hsiao-Tien Pao, Chung-Ming Tsai, 2011. Modeling and forecasting the

CO2 emissions, energy consumption, and economic growth in Brazil. Energy, 35:

2450–2458

Ilhan Ozturk, Ali Acaravci, 2010. CO2 emissions, energy consumption and economic growth in Turkey. Renewable and Sustainable Energy Reviews, 14: 3220-

3225

Ilhan Ozturk, Ali Acaravci, 2010. On the relationship between energy

consumption, CO2 emissions and economic growth in Europe. Energy, 35: 5412–

5420

Ilhan Ozturk, Ali Acaravci, 2013. The long-run and causal analysis of energy,

growth, openness and financial development on carbon emissions in Turkey. Energy

Economics, 36: 262-267

Im KS, Pesaran MH, Shin Y, 2003. Testing for unit roots in heterogeneous panels. J Econom, 115: 53–74.

Jalil A, Feridun M, 2011. The impact of growth, energy and financial development on the environment in China: a cointegration analysis. Energy Econ,

33: 284–91.

Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of

Economic Dynamics and Control, 12: 231-254

Karshenas, M., 2001. Agriculture and economic development in Sub-Saharan

Africa and Asia. Cambridge Journal of Economics, 25: 315-342.

Liu, X., 2005. Explaining the relationship between CO2 emissions and national income; the role of energy consumption. Economic Letters, 87: 325–328.

Manuel Arellano, Olympia Bover, 1995. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68: 29-

51

Mohammad Salahuddin, Jeff Gow, Ilhan Ozturk, 2015. Is the long- runrelationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust? Renewable and Sustainable Energy Reviews, 51: 317-326.

Murthy, NRV, 2007. Panel cointegration analysis: an empirical example in

cointegration for the applied economist. In Rao B, editor. Cointegration for the

applied economics. 2nd ed.: 222–56.

Nelson C, Plosser C, 1982. Trends and random walks in macroeconomic time

series: some evidence and implications. J Monet Econ, 10: 130–62.

Payne, J., 2010. Survey of the international evidence on the causal

relationship between energy consumption and growth. Journal of Economic

Studies, 37 (1): 53–95.

Pedroni P, 1999. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bull Econ Stat, 61: 653–70.

Pedroni P, 2001. Purchasing power parity tests in cointegrated panels. Rev

Econ Stat, 83: 727–31.

Pedroni, P., 2000. Fully modified OLS for heterogeneous cointegrated panels. Advanced in Econometrics, 15: 93-130.

Pesaran MH, 2007. A simple panel unit root test in the presence of cross-

section dependence. J Appl Econom, 22: 265–312.

Pesaran, M. H., Y. Shin, and R. P. Smith, 1997. Estimating Long-run

Relationships in Dynamic Heterogeneous Panels.DAE Working Papers

Amalgamated Series 9721

Pesaran, M.H., 2004. General diagnostic tests for cross section dependence in

panels. Cambridge working papers in economics no. 435. University of Cambridge

and CESifo working paper series no. 1229.

Richard Blundell Stephen Bond, 1998. Initial conditions and moment

restrictions in dynamic panel data models. Journal of Econometrics, 87: 115-143

Robert G. King and Ross Levine, 1993. Finance and Growth: Schumpeter Might be Right. The Quarterly Journal of Economics, 108: 717-737

S.S. Wang, D.Q. Zhou, P. Zhou, Q.W. Wang, 2011. CO2 emissions, energy

consumption and economic growth in China: A panel data analysis. Energy Policy,

39: 4870-4875

Saboori B, Sapri M, Baba M, 2014. Economic growth, energy consumption and CO2 emissions in OECD (Organization of Economic Co-operation and Development)„s transport sector: a fully modified bi-directional relationship approach. Energy, 66(1): 150–61.

Sahbi Farhani, Anissa Chaibi, Christophe Rault, 2014. CO2 emissions, output, energy consumption, and trade in Tunisia. Economic Modelling, 38: 426–434

Shahbaz M, Solarin SA, Mahmood H, Arouri M, 2013. Does financial

development reduce CO2 emissions in Malaysian economy? A time series analysis

Econ Model, 35: 145–52.

Shahbaz M, Zeshan M, Afza T, 2012. Is energy consumption effective to spur

economic growth in Pakistan? New evidence from bounds test to level relationships and Granger causality. Econ Model, 29: 2310–9.

Sims CA, 1980. Macroeconomics and reality. Econometrica, 48(1): 1–49. Sims CA, 1986. Are forecasting models usable for policy analysis? Fed Reserve Bank Minneap Q Rev, 3: 1–16.

Søren Johansen, 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12: 231-254

Usama Al-mulali và Che Normee Binti Che Sab, 2012. The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy, 16: 180-186

William H. Greene, Terry G. Seaks, 1991. The Restricted Least Squares Estimator: A Pedagogical Note. The Review of Economics and Statistics, 73:563-

WOOLDRIDGE, J. M. 2002. Econometric analysis of cross section and panel

data. Cambridge, Mass, MIT Press

World Development Report 1991: The Challenge of Development. <http://dx.doi.org/10.1596/978-0-1952-0868-9>. [Ngày truy cập: 19 tháng 3 năm 2016].

Zhang YJ, 2011. The impact of financial development on carbon emissions: an empirical analysis in China. Energy Policy, 39: 2197–203.

Ziaei SM, 2015. Effects of financial development indicators on energy

consumption and CO2 emissions of European, East Asian and Oceania countries.

PHỤ LỤC

Phụ lục 1: Kiểm định tính ừng *Bậc gốc ữ liệu

*Sai phân ậc 1 ữ liệu

-2.185 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for co2

-2.035 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for electric

-2.124 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for gdp

-1.561 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,24)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Phụ lục 2: Kiểm định đồng liên kết

Johansen Fisher Panel Cointegration

Test

Series: CO2 GDP ELECTRIC FD Sample: 1991 2014

-4.507 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,23)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for dco2

-3.635 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,23)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for delectric

-3.240 -2.070 -2.170 -2.340 CIPS cv10 cv5 cv1 CIPS test, N,T = (15,23)

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for dgdp

-4.176 -2.070 -2.170 -2.340 CIPS* cv10 cv5 cv1 CIPS test, N,T = (15,23)

Individual ti were truncated during the aggregation process

Dynamics: lags criterion decision Portmanteau (Q) test for white noise Deterministics chosen: constant

Included observations: 360

Trend assumption: Linear deterministic trend Lags interval (in first differences): 1 1

Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue)

Hypothesized Fisher Stat.* Fisher Stat.*

No. of CE(s)

(from trace

test) Prob.

(from max-

eigen test) Prob.

None 151.7 0.0000 110.1 0.0000

At most 1 70.58 0.0000 49.93 0.0126

At most 2 43.59 0.0520 42.18 0.0691

At most 3 33.18 0.3146 33.18 0.3146

* Probabilities are computed using asymptotic Chi-square distribution.

Individual cross section results

Trace Test Max-Eign Test

Cross Section Statistics

Prob.** Statistics Prob.** Hypothesis of no cointegration 1 56.2294 0.0067 34.7307 0.0051 2 44.4118 0.1016 26.5965 0.0665 3 46.8687 0.0617 22.0956 0.2155

4 45.3818 0.0839 23.0201 0.1726 5 74.8238 0.0000 34.6094 0.0053 6 53.7232 0.0127 25.7098 0.0852 7 50.7039 0.0263 26.1174 0.0761 8 66.8636 0.0003 34.6740 0.0052 9 62.4965 0.0012 39.4821 0.0009 10 62.9441 0.0011 41.9779 0.0004 11 42.2581 0.1516 26.5346 0.0676 12 50.0304 0.0308 19.5987 0.3696 13 62.7881 0.0011 29.4060 0.0289 14 52.4182 0.0175 19.3225 0.3900 15 63.3997 0.0009 34.5147 0.0055

Hypothesis of at most 1 cointegration relationship

1 21.4988 0.3273 13.0799 0.4449 2 17.8153 0.5797 10.9793 0.6494 3 24.7731 0.1697 15.0930 0.2824 4 22.3617 0.2788 14.8681 0.2982 5 40.2144 0.0022 27.6835 0.0052 6 28.0134 0.0792 14.8243 0.3014 7 24.5865 0.1768 13.7099 0.3893 8 32.1897 0.0260 17.6072 0.1452 9 23.0144 0.2454 16.0139 0.2240 10 20.9662 0.3597 16.8502 0.1792 11 15.7235 0.7316 10.4395 0.7027

12 30.4318 0.0422 17.7585 0.1391 13 33.3820 0.0185 17.6374 0.1440 14 33.0958 0.0201 17.6084 0.1452 15 28.8850 0.0634 19.5768 0.0813

Hypothesis of at most 2 cointegration relationship

1 8.4189 0.4218 6.7620 0.5177 2 6.8360 0.5968 6.2608 0.5800 3 9.6801 0.3062 7.3853 0.4446 4 7.4936 0.5210 7.2163 0.4639 5 12.5309 0.1332 11.6009 0.1266 6 13.1891 0.1080 13.0220 0.0778 7 10.8767 0.2192 8.3332 0.3458 8 14.5825 0.0683 13.8172 0.0587 9 7.0005 0.5776 5.1091 0.7280 10 4.1160 0.8940 3.9684 0.8627 11 5.2840 0.7779 5.1743 0.7197 12 12.6733 0.1273 12.4185 0.0959 13 15.7446 0.0459 15.7268 0.0292 14 15.4874 0.0501 10.9954 0.1544 15 9.3082 0.3376 8.9865 0.2873

Hypothesis of at most 3 cointegration relationship

1 1.6569 0.1980 1.6569 0.1980

2 0.5752 0.4482 0.5752 0.4482

4 0.2773 0.5985 0.2773 0.5985 5 0.9301 0.3348 0.9301 0.3348 6 0.1671 0.6827 0.1671 0.6827 7 2.5435 0.1107 2.5435 0.1107 8 0.7653 0.3817 0.7653 0.3817 9 1.8914 0.1690 1.8914 0.1690 10 0.1476 0.7008 0.1476 0.7008 11 0.1097 0.7404 0.1097 0.7404 12 0.2548 0.6137 0.2548 0.6137 13 0.0179 0.8936 0.0179 0.8936 14 4.4919 0.0340 4.4919 0.0340 15 0.3218 0.5706 0.3218 0.5706 **MacKinnon-Haug-Michelis (1999) p-values

Phu lục 3: Kiểm định độ trễ tối đa

VAR Lag Order Selection Criteria

Endogenous variables: CO2 GDP ELECTRIC FD Exogenous variables: C

Sample: 1991 2014 Included observations: 330

Lag LogL LR FPE AIC SC HQ

1 1629.532 5845.529 6.82e-10 -9.754742 -9.524494 -9.662899 2 1686.251 110.3424* 5.33e-10* -10.00152* -9.587072* -9.836202*

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Phụ lục 4: Kiểm định độ ổn định của mơ hình VAR

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Inverse Roots of AR Characteristic Polynomial

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 10

Accumulated Response of CO2 to CO2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 10

Accumulated Response of CO2 to ELECTRIC

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 10

Accumulated Response of CO2 to GDP

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 10

Accumulated Response of CO2 to FD

Accumulated Response to Cholesky One S.D. Innovations

Phụ lục 6: Phân rã phƣơng sai

Period S.E. CO2 ELECTRIC GDP FD

1 0.117060 100.0000 0.000000 0.000000 0.000000 2 0.155268 96.98400 1.232422 1.270487 0.513092 3 0.177386 96.72667 0.961232 1.742903 0.569200 4 0.202510 96.80208 0.737637 1.722083 0.738198 5 0.224705 96.68480 0.599303 1.852145 0.863754 6 0.245025 96.54635 0.525302 1.926385 1.001960

7 0.264641 96.39449 0.492551 1.974341 1.138613 8 0.283367 96.20331 0.500205 2.020817 1.275673 9 0.301422 95.98195 0.545464 2.058791 1.413797 10 0.318956 95.73544 0.621436 2.091296 1.551824

Cholesky Ordering: CO2 ELECTRIC GDP FD

Phụ lục 7: Kết quả hồi quy

Difference (null H = exogenous): chi2(1) = 1.75 Prob > chi2 = 0.186 Hansen test excluding group: chi2(237) = 12.91 Prob > chi2 = 1.000 iv(electric)

Difference-in-Hansen tests of exogeneity of instrument subsets: (Robust, but weakened by many instruments.)

Hansen test of overid. restrictions: chi2(238) = 14.66 Prob > chi2 = 1.000 (Not robust, but not weakened by many instruments.)

Sargan test of overid. restrictions: chi2(238) =1307.10 Prob > chi2 = 0.000 Arellano-Bond test for AR(2) in first differences: z = -1.70 Pr > z = 0.089 Arellano-Bond test for AR(1) in first differences: z = -1.70 Pr > z = 0.089 _cons

electric Standard

Instruments for levels equation L(1/23).electric

GMM-type (missing=0, separate instruments for each period unless collapsed) D.electric

Standard

Instruments for first differences equation

_cons -5.132522 .9407567 -5.46 0.000 -6.976371 -3.288673 fd -.069389 .0528724 -1.31 0.189 -.173017 .0342389 electric .3566631 .1477139 2.41 0.016 .0671492 .6461769 gdp .4722397 .2359238 2.00 0.045 .0098375 .9346418 co2 Coef. Std. Err. z P>|z| [95% Conf. Interval] Robust

Prob > chi2 = 0.000 max = 24 Wald chi2(3) = 254.51 avg = 24.00 Number of instruments = 242 Obs per group: min = 24 Time variable : year Number of groups = 15 Group variable: country Number of obs = 360 Dynamic panel-data estimation, one-step system GMM

Difference (null H = exogenous): chi2(1) = -0.87 Prob > chi2 = 1.000 Hansen test excluding group: chi2(35) = 12.16 Prob > chi2 = 1.000 iv(delectric)

Difference-in-Hansen tests of exogeneity of instrument subsets: (Robust, but weakened by many instruments.)

Hansen test of overid. restrictions: chi2(36) = 11.28 Prob > chi2 = 1.000 (Not robust, but not weakened by many instruments.)

Sargan test of overid. restrictions: chi2(36) = 56.73 Prob > chi2 = 0.015 Arellano-Bond test for AR(2) in first differences: z = -1.19 Pr > z = 0.235 Arellano-Bond test for AR(1) in first differences: z = -2.06 Pr > z = 0.039 DL(1/2).delectric

GMM-type (missing=0, separate instruments for each period unless collapsed) _cons

delectric Standard

Instruments for levels equation D.delectric

Standard

Instruments for first differences equation

_cons -.0361191 .0163297 -2.21 0.027 -.0681246 -.0041136 dfd .0725239 .2162487 0.34 0.737 -.3513157 .4963635 delectric -.6550296 .4009715 -1.63 0.102 -1.440919 .1308601 dgdp 2.534759 .4574562 5.54 0.000 1.638161 3.431356 L1. .6438879 .2105017 3.06 0.002 .2313122 1.056464 ect dco2 Coef. Std. Err. z P>|z| [95% Conf. Interval] Robust

Prob > chi2 = 0.000 max = 21 Wald chi2(4) = 78.46 avg = 21.00 Number of instruments = 41 Obs per group: min = 21 Time variable : year Number of groups = 15 Group variable: country Number of obs = 315 Dynamic panel-data estimation, one-step system GMM

Share of group-specific trends significant at 5% level: 0.733 (= 11 trends) Variable trend refers to the group-specific linear trend terms.

(RMSE uses residuals from group-specific regressions: unaffected by 'robust'). Root Mean Squared Error (sigma): 0.0889

_cons -9.823379 1.397398 -7.03 0.000 -12.56223 -7.08453 trend -.0236798 .0099262 -2.39 0.017 -.0431347 -.0042249 fd -.0809999 .0587414 -1.38 0.168 -.196131 .0341312 electric .3558229 .1710101 2.08 0.037 .0206492 .6909967 gdp .6379821 .2611624 2.44 0.015 .1261133 1.149851 co2 Coef. Std. Err. z P>|z| [95% Conf. Interval] Prob > chi2 = 0.0067 Wald chi2(3) = 12.20 max = 24 avg = 24.0 Obs per group: min = 24 Group variable: country Number of groups = 15

Một phần của tài liệu (LUẬN văn THẠC sĩ) mối quan hệ giữa tăng trưởng kinh tế, tiêu thụ điện, lượng khí thải CO2 và phát triển tài chính ở các quốc gia khu vực châu á – thái bình dương (Trang 58 - 77)