Biến đổi của Cl và Cd theo αm

Một phần của tài liệu Ứng dụng của máy bay cánh vẫy Khí động lực học (Trang 34)

Re 1800 600 200 60 20

dCCL/dαm 3.0 2.9 2.9 2.5 1.8

Với Re trên∼ 100, dCCL/dαm hầu như không thay đổi theo Re và giá trị của nó xấp xỉ khoảng 3.0,

Với Re dưới ∼100, dCCL/dαm giảm nhanh,

Hình 19: biến đổi của αm tới Cl và Cd d) Ảnh hưởng của thời gian xoay Δτr (duration of wing rotation)

Trong các tính tốn ở trên, Δτr = 1,87 (= 0,2; ϖ = 0,93). Quan sát nhiều lồi cơn trùng trong chuyến chuyển động bay tự do ( Ellington, 1984c ; Ennos, 1989 ) cho thấy ϖ dao động trong khoảng từ 0,8 đến 1,4. Ở đây, chúng họ điều tra các tác động của việc thay đổi Δτr (tức là thay đổi ϖ) đối với các hệ số lực khí động. hình 19 đưa ra sự biến thiên của C L và C D trong một chu kỳ cho bốn giá trị của Δτr; bảng 3 đưa ra các hệ số lực khí động trung bình. Thay đổi Δτr r không làm thay đổi hệ số lực khí động trung bình nhiều (xem bảng 3); khi Δτr lên gần gấp đôi (thay đổi từ 1,27 đến 2,40), CC L và CC D chỉ thay đổi khoảng 3%. C L và C D ở mid-portion of a half-stroke thay đổi rất ít với Δτr (xem hình 12). Các đỉnh lực xuất hiện xung quanh khu vực đảo cánh (stroke reversal) là do ảnh hưởng của việc quay cánh ( Dickinson và cộng sự, 1999 ; Sun và Tang, 2002a ); tại một tốc độ tịnh tiến nhất định, các đỉnh tăng theo tốc độ quay ( Sane và Dickinson,

2002 ; Hamdani và Sun, 2000 ). Khi Δτr r tương đối ngắn (ϖ tương đối lớn), các đỉnh lực

tương đối lớn nhưng chúng chiếm một khoảng thời gian ngắn; khi Δτr dài hơn (ϖ nhỏ hơn), các đỉnh lực trở nên nhỏ hơn nhưng chúng chiếm một khoảng thời gian dài hơn. Kết quả là, các đỉnh lực xung quanh khu vực đảo cánh (stroke reversal) cho các trường hợp khác nhau của Δτr dẫn đến sự tăng hoặc giảm với hệ số lực trung bình tương ứng. Điều này giải thích tại sao CC L và CC D không thay đổi nhiều với Δτr (hoặc ϖ).

Bảng 3: ảnh hưởng của Δτr tới CCL và CCD

Δτr

2.39 0.73 1.60 1.71

1.88 0.93 1.61 1.70

1.54 1.13 1.63 1.72

1.31 1.33 1.65 1.76

Bảng thông số trên cho thấy sự biến đổi của các hệ số lực trung bình theo (Δτr): sự

thay đổi của nó khơng tác động đến các hệ số lực khí động mạnh.

Hình 20: ảnh hưởng của Δτr tới CCL và CCD e) Ảnh hưởng của thời điểm xoay τr (rotation timing)

Hình dưới đây cho thấy sự biến đổi C L và C D trong một chu kỳ cho thời gian quay khác nhau (Re, α m , Φ và Δτ r cũng giống như trong trường hợp điển hình) . Trong trường

hợp xoay vịng tối ưu (phần chính của sự xoay được tiến hành trước khi đảo ngược xoay cánh (stroke reversal), các đỉnh trong C L và C D xuất hiện ở vị trí gần cuối của một half- stroke thì lớn hơn so với trường hợp xoay trong đối xứng; điều này là do cánh tiến hành pitching-up với tốc độ tịnh tiến cao hơn (xem hình 21). Khi giai đoạn đầu của một half- stroke tiếp theo, C L và C D cũng lớn hơn so với các giá trị của chúng trong trường hợp xoay đối xứng; điều này là do cánh khơng tiến hành quay vịng xuống trong giai đoạn này (sự quay cánh gần như đã kết thúc trước giai đoạn này). Trong trường hợp quay trễ -delayed rotation (phần chính của sự xoay được thực hiện sau khi đảo ngược xoay cánh- stroke reversal), khơng có đỉnh C Lvà C D xuất hiện gần cuối của half-stroke vì cánh khơng quay trong giai đoạn này; khi bắt đầu một haft-stroke tiếp theo, C L âm tính và C D là lớn so với trong trường hợp xoay đối xứng bởi vì tất cả các vịng quay cánh được thực hiện trong giai đoạn này và sự xoay là quay vòng xuống.

Trong trường hợp rotation tối ưu (phần chính của rotation được tạo ra trước khi đảo chiều strockes), các đỉnh của CL và CD gần với điểm kết thúccủa một half-stroke lớn hơn trong trường hợp rotation đối xứng; điều này bởi vì cánh quay lên với tốc độ tịnh tiến cao hơn (như hình trên biểu diễn)

Khi bắt đầu của một half-stroke tiếp theo, CL và CD cũng lớn hơn trong trường hợp xoay đối xứng bởi vì cánh khơng quay xuống trong giai đoạn này (sự quay của cánh gần như đã kết thúc trước giai đoạn này).

Trong trường hợp rotation trễ (phần chính của rotation được tạo rấu sự đảo chiều của strockes), các đỉnh của CL và CD không xuất hiện gần điểm cuối của half-stroke bởi vì cánh khơng quay trong giai đoạn này.

Ở điểm bắt đầu tiếp theo của half-stroke, CL thì âm và CD thì lớn so với trường hợp rotation đối xứng bởi vì tất cả sự quay của cánh thực hiện tong giai đoạn này và là quay hướng xuống.

Các hệ số lực trung bình được cho trong bảng 4 . C L và CC D cho trường hợp xoay vòng tối ưu lần lượt lớn hơn khoảng 40% và 30% so với trường hợp quay chậm.

Bảng 4: Ảnh hưởng của thời điểm xoay cánh đến hệ số lực nâng và lực cản trung bình

Thời gian quay CC L CC D CC L / CC D

Đối xứng 1,66 1,67 0,99

Xoay trước 1,84 2,11 0,87

IV. Tổng kết

Các nghiên cứu trước đây về cánh quay (Usherwood và Ellington, 2002a, b;

Dickinson và cộng sự, 1999) cho thấy các hệ số lực khí động lớn đã được tạo ra do cơ

chế trễ thất tốc trong phạm vi Re khoảng 140 (cánh ruồi giấm) đến 15 000 (cánh chim quail) và các hệ số lực không nhạy với Re. Nghiên cứu hiện tại về một cánh vỗ đã cung cấp kết quả cho Re thấp hơn. Khi Re dưới ∼100, CC L giảm và CC D tăng rất nhiều. Điều này là do ở mức Re (20, 60) thấp như vậy , mặc dù LEV vẫn tồn tại và gắn vào cánh trong các giai đoạn tịnh tiến của haft strock, nhưng nó khá yếu và độ xốy của nó bị khuếch tán đáng kể.

Từ dữ liệu chuyến bay của cơn trùng, có thể xác định hệ số nâng trung bình cần thiết để hỗ trợ trọng lượng của nó (ký hiệu là CC L, W). Dữ liệu của chuyến bay treo tự do (hoặc ở tốc độ tịnh tiến rất thấp) trong tám loài đã thu được. Sáu loài là từ Ellington ( 1984b , c ) [chiều dài cánh của những loài này dao động từ 9,3 mm (ở Episyrphus balteatus ) đến 14,1 mm (ở Bombus hortorum )]; hai loài nhỏ hơn, Drosophila

virilis và Encarsia formosa , đến từ Weis-Fogh ( 1973 ). Những dữ liệu này bao gồm:

khối lượng côn trùng (M), chiều dài cánh, dây cung cánh, bán kính đặt momen qn tính hình học bậc hai của diện tích cánh, biên độ và tần số đập cánh). Trên cơ sở các dữ liệu này, tốc độ tham chiếu, Re và hệ số nâng trung bình cần thiết để cân bằng với trọng lượng của cơn trùng đã được tính tốn (U = 2Φ nr2, Re = Uc/ν và CC L,W = mg/0.5ρ U 2S t , trong

đó g và St lần lượt là gia tốc trọng trường và diện tích của cả hai cánh). Re và CC L, W được đưa ra trong bảng 5.

Bảng 5: dữ liệu về hệ số lực nâng cần thiết đề cân bằng với trọng lượng của các lồi cơn trùng ở chế độ bay treo

Loài M (mg) R (mm ) c (mm) r 2 / R Φ (độ.) n (s -1) Re CC L, W Coleoptera: bọ cánh cứng 27.3 9.3 2.20 0.57 90 160 408 1.52

Loài M (mg) R (mm ) c (mm) r 2 / R Φ (độ.) n (s -1) Re CC L, W Coccinella 7-pataata 34,4 11.2 3.23 0,53 177 54 443 1,82 Drosophila virilis 2.0 3.0 0,97 0,58 150 240 147 1,15 Tipala salip 11.4 12,7 2,38 0,6 123 45,5 245 1,31 Episyrphus balteatus 27.3 9,3 2,20 0,57 90 160 408 1,52 Epaxrphus tenax 68,4 11.4 3.19 0,53 109 157 812 1,10 Apis mellifera 101,9 9,8 3.08 0,54 131 197 1018 1,19 Bombus hortorum 226 14.1 4.2 0,54 120 152 1463 1,21 Encarsia formosa 0,025 0,62 0,23 0,69 135 400 13 2,87 Encarsia formosa 0,025 0,65 0,38 0,69 135 400 22 1,62

Bây giờ, họ so sánh dữ liệu trong bảng 5 với kết quả mơ phỏng cánh mơ hình (ở đây, họ giả định rằng hình dạng cánh khơng có ảnh hưởng đáng kể đến hệ số nâng; điều này đúng với cánh côn tùng đang nghiên cứu ( Usherwood và Ellington, 2002b). Trong số các lồi cơn trùng được xem xét, Encarsia formosacó Re thấp nhất và CC L,W là 2,87. Ở mức Re thấp, C L tối đa là ~1.15 (α m ≈45 °), là nhỏ hơn nhiều so với CC L,W. Những kết quả này cho thấy rằng bằng cách sử dụng chuyển động vỗ được mô tả ở trên, côn trùng không thể tạo ra lực nâng đủ để hỗ trợ trọng lượng của nó; tức là ở mức Re thấp như vậy, cần cơ chế high-lift, là cơ chế trễ thất tốc.

Đối với các lồi cánh vẫy thì chúng khơng thể tạo đủ lực nâng với liệng thông thường trong không trung. Chúng phải vỗ. Chúng liệng được chủ yếu là do dòng đối lưu.

TÀI LIỆU THAM KHẢO

1. J. M. McMichael, Col. M. S. Francis, “Micro Air Vehicles - Toward a New Dimension in Flight”. Website: WWW.DARPA.MIL.

2. T. J. Mueller, “Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles”, Hessert Center for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame.

3. G. Torres, T. J. Mueller, “Micro Aerial Vehicle Development: Design, Components, Fabrication, and Flight Testing”, AUVSI Unmanned Systems 2000 Symposium and Exhibition, Orlando, 2000.

4. Z. J. Wang, J. M. Birch, M. H. Dickinson, “Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments”, The Journal of Experimental Biology 207, 449-460.

5. A. Rajib, B. S. M Ebna Hai, M. A. Salam, “Design analysis of MAV using NACA 0012 aerofoil profile”, Military Institute of Science and Technology, Dhaka- 1216, Bangladesh.

Một phần của tài liệu Ứng dụng của máy bay cánh vẫy Khí động lực học (Trang 34)

Tải bản đầy đủ (DOCX)

(41 trang)
w