Chƣơng 2 : Các kỹ thuật xử lý đám mây điểm
b. Ghép nhóm
2.2. Tính toán đặc trƣng điểm
2.2.1. Các điểm lân cận
Các điểm lân cận là một khái niệm cơ bản trong các quá trình xử lý đám mây điểm. Việc xác định các điểm lân cận không chỉ là tiền đề mà còn có thể quyết định đến chất lượng, độ chính xác, thời gian thực hiện của các thuật toán xử lý đặc trưng điểm về sau, qua đó ảnh hưởng đến toàn hệ thống.
Khái niệm các điểm lân cận được xác định bằng khoảng cách giữa điểm cần xem xét đến các điểm xung quanh nó. Giả sử điểm cần xem xét là , và
* + là tập hợp n điểm xung quanh . Khi đó, một điểm là lân
cận của nếu
‖ ‖ (2.1)
Trong đó, d là giá trị độ dài lớn nhất có thể để xác định các điểm lân cận của một điểm, còn vế trái là khoảng cách Euclid giữa hai điểm và . Tập hợp các điểm thỏa mãn điều kiện trên là các điểm lân cận của . Các đặc trưng điểm trong đám mây điểm sau đó sẽ được mô tả bằng một hàm véc tơ F, mô tả các thông tin về đặc trưng của điểm theo :
( ) ( ) (2.2)
Với ( ) là một véc tơ i chiều, biểu diễn đặc trưng điểm của .
- Xác định bằng k điểm lân cận gần điểm cần xem xét nhất (tìm kiếm theo
k);
- Xác định bằng tất cả k điểm lân cận trong một bán kính r tính từ điểm cần xem xét (tìm kiếm theo bán kính).
Phương pháp tìm kiếm theo bán kính có một số điểm mạnh nhất định trong việc xác định các đặc trưng của một điểm vì với phương pháp này, các điểm lân cận sẽ được xác định mà không phụ thuộc vào mật độ điểm xung quanh điểm cần xem xét, do đó nó không bị ảnh hưởng bởi khoảng cách cũng như góc nhìn từ điểm tới thiết bị quét. Phương pháp tìm kiếm thông dụng hơn là tìm kiếm theo số lân cận k được chọn từ trước.
Để xác định được k điểm gần nhất đối với điểm cần xem xét từ đám mây điểm, ta sẽ phải tính khoảng cách từ tất cả các điểm trong đám mây điểm đến điểm đó, sau đó chọn ra k điểm có khoảng cách nhỏ nhất. Quá trình này sẽ gây lãng phí tài nguyên máy tính khi thực hiện, vì việc tính toán quá nhiều khoảng cách là không cần thiết.