Tư tưởng chính của giải thuật di truyền

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu ứng dụng các phương pháp học máy tiên tiến trong công tác dự báo vận hành hồ hòa bình luận văn ths công nghệ thông tin 60 48 05 (Trang 34 - 36)

2.1 Giới thiệu giải thuật di truyền

2.1.2 Tư tưởng chính của giải thuật di truyền

Giải thuật di truyền là một loại thuật toán mô phỏng các hiện tượng tự nhiên: kế thừa đấu tranh sinh tồn để cải tiến lời giải và khảo sát không gian lời giải.

Khái niệm kế thừa và đấu tranh sinh tồn được giải thích qua ví dụ về sự tiến hoá của một quần thể thỏ như sau:

Có một quần thể thỏ. Trong số đó có một số con nhanh nhẹn và thông minh hơn những con khác. Những chú thỏ nhanh nhẹn và thông minh có xác suất bị chồn, cáo ăn thịt nhỏ hơn, do đó chúng tồn tại để làm những gì tốt nhất có thể: tạo thêm nhiều thỏ tốt. Dĩ nhiên, một số thỏ chậm chạp, đần độn cũng sống chỉ vì may mắn. Quần thể những chú thỏ còn sống sót sẽ bắt đầu sinh sản. Việc sinh sản này sẽ tạo ra một hỗn hợp tốt về “nguyên liệu di truyền thỏ”: Một số thỏ chậm chạp có con với những con thỏ nhanh, một số thỏ nhanh với thỏ nhanh, một số thỏ thông minh với thỏ đần độn,… Và trên tất cả, thiên nhiên thỉnh thoảng lại ném vào một con thỏ “hoang dã” bằng cách làm đột biến nguyên liệu di truyền thỏ. Những chú thỏ con, do kết quả này sẽ nhanh hơn và thông minh hơn những con trong quần thể gốc vì có nhiều bố mẹ nhanh nhẹn và thông minh hơn đã thoát chết khỏi chồn, cáo. (Thật hay là những con chồn cáo cũng trải qua những tiến trình tương tự, nếu không những con thỏ sẽ trở nên nhanh chóng và thông minh đến nỗi những con chồn, cáo không thể bắt chúng được).

Khi tìm kiếm lời giải tối ưu, GA cũng thực hiện các bước tương ứng với câu chuyện đấu tranh sinh tồn của loài thỏ. GA cũng sử dụng các thuật ngữ vay mượn của di truyền học. Ta có thể nói về các cá thể (hay kiểu gen, cấu trúc) trong một quần thể, những cá thể này cũng còn được gọi là các nhiễm sắc thể (chromosome). Điều này có thể gây một chút nhầm lẫn: mỗi tế bào của một cơ thể của một chủng loại đã cho mang một số loại nhiễm sắc thể nào đó (ví dụ ở người có 46 nhiễm sắc thể), nhưng trong GA ta chỉ nói về những cá thể có một nhiễm sắc thể. Các nhiễm sắc thể được tạo thành từ các đơn vị - các gen - biểu diễn trong một chuỗi tuyến tính. Mỗi gen kiểm soát một hoặc nhiều đặc trưng. Gen với những đặc trưng nhất định có vị trí nhất định trong nhiễm sắc thể. Bất cứ đặc trưng nào của cá thể cũng có thể tự biểu hiện một cách phân biệt và gen có thể nhận một số giá trị khác nhau. Một nhóm các gen (nhiễm sắc thể) sẽ biểu diễn một lời giải của bài toán đang giải (ý nghĩa, cấu trúc của nhiễm sắc thể được người sử dụng xác định trước). Một tiến trình tiến hoá được thực hiện trên một quần thể các nhiễm sắc thể tương ứng với một quá trình tìm kiếm lời giải trong không gian lời giải.

Thực ra, GA thuộc lớp các thuật toán xác suất, nhưng lại rất khác những thuật toán ngẫu nhiên vì chúng kết hợp các phần tử tìm kiếm trực tiếp và ngẫu nhiên. Khác biệt quan trọng giữa phương pháp tìm kiếm của GA và các phương pháp tìm kiếm khác là GA duy trì và xử lý một tập các lời giải (quần thể) - tất cả các phương pháp khác chỉ xử lý một điểm trong không gian tìm kiếm. Chính vì thế, GA mạnh hơn các phương pháp tìm kiếm hiện có rất nhiều.

Cấu trúc của giải thuật di truyền đơn giản tương tự như cấu trúc của bất kì một chương trình tiến hoá nào. Ở bước lặp t, giải thuật di truyền duy trì một quần thể các lời giải (các nhiễm sắc thể), P t( )x x1t, 2t,...,xnt. Mỗi lời giải t

i

x được lượng giá để biết được độ “thích nghi” của nó. Sau đó ở lần lặp thứ t+1, một quần thể mới được hình thành bằng cách chọn giữ lại những cá thể thích nghi nhất. Một số cá thể của quần thể này trải qua những biến đổi nhờ lai tạo (phép lai) và đột biến (phép đột biến), hình thành nên những lời giải mới. Phép lai kết hợp các tính chất của hai nhiễm sắc thể „cha‟ và „mẹ‟ để tạo ra các nhiễm sắc thể „con‟ bằng cách hoán vị các đoạn gen tương ứng của cha và mẹ. Ví dụ: nếu cha mẹ được biểu diễn bằng vectơ 5 chiều (a1,b1,c1,d1,e1) và (a2,b2,c2,d2,e2), thì lai tạo, hoán vị tại vị trí thứ 2 sẽ sinh ra các nhiễm sắc thể con (a1,b1,c2,d2,e2) và (a2,b2,c1,d1,e1). Phép lai cho phép trao đổi thông tin giữa các lời giải.

Khác với phép lai, phép đột biến thay đổi một cách ngẫu nhiên một hay nhiều gen của nhiễm sắc thể được chọn, thay đổi này được thực hiện với một xác suất thể hiện tốc độ đột biến. Phép đột biến cho phép đưa thêm các thông tin mới vào quần thể làm cho chất liệu di truyền phong phú thêm.

Sau đây chúng ta sẽ tìm hiểu về một giải thuật di truyền đơn giản.

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu ứng dụng các phương pháp học máy tiên tiến trong công tác dự báo vận hành hồ hòa bình luận văn ths công nghệ thông tin 60 48 05 (Trang 34 - 36)

Tải bản đầy đủ (PDF)

(94 trang)