3.2. Thực thi và đánh giá thuật toán
Trong luận văn này tôi sử dụng 2 thuật toán học máy để nhận dạng và phân loại hành vi trên bò là thuật toán cây quyết định và thuật toán SVM. Thuật toán cây quyết định được thực thi trên tập dữ liệu gia tốc 3 trục của thiết bị đo gia tốc trên cổ. Thuật toán SVM được chi làm 2 trường hợp thực thi: trường hợp 1 thực thi trên dữ liệu gia tốc 3 trục của thiết bị đo gia tốc trên cổ và trường hợp thứ 2 thực thi trên dữ liệu gia tốc 3 trục của cả 2 thiết bị đo gia tốc trên chân và trên cổ. Cuối cùng luận văn sẽ đánh giá hiệu năng của hệ thống với các trường hợp trên.
3.2.1. Thuật toán cây quyết định
Trong luận văn này, các hoạt động mức cao của bò là hoạt động ăn và đi, các hoạt động mức thấp của bò là hoạt động uống, đứng và nằm. Các hoạt động này được phân loại dựa trên 2 thông số VeDBA (gia tốc trung bình) và SCAY (thành phần gia tốc tĩnh theo trục y) bởi thuật toán cây quyết định. Dữ liệu gia tốc được dùng là gia tốc của thiết bị đeo trên cổ bò.
Giá trị VeDBA được xác định dựa trên công thức:
VeDBA = √ (39)
Trong đó, giá trị DBA (gia tốc động) được tính bởi việc trừ gia tốc cho một lượng gia tốc tĩnh μx, μy, μz như dưới đây:
(40)
Hình 3.17 là sơ đồ thuật toán cây quyết định được dùng trong luận văn này. Thuật toán cây quyết định được thực thi với 4 ngưỡng: Threshold A, Threshold B, Threshold C1 và Threshold C2 để phân tách 5 hành vi của bò là đi, đứng, nằm, ăn và uống.