Phân tích đột biến

Một phần của tài liệu (LUẬN VĂN THẠC SĨ) Kỹ thuật kiểm thử đột biến và ứng dụng để kiểm thử các chương trình Java (Trang 70 - 76)

4.4.5. Tạo và phân tích đột biến cho chương trình SXQSort.java bằng

4.4.5.2. Phân tích đột biến

Chúng ta sử dụng thành phần Mutants executor của MuJava để thực thi

chương trình SXQSort.java và 47 đột biến của nó, với 22 trường hợp kiểm thử được xây dựng trong SXQSortTest.Java, kết quả của quá trình thực thi được biểu diễn ở hình 4.13.

Hình 4.13 –Kết quả thực thi các đột biến của SXQSort.java

Đối với 4 đột biến lớp, trong quá trình MuJava thực thi với 22 trường hợp kiểm thử được thiết kế sẵn trong SXQSortTest.Java, chỉ có 1 đột biến bị diệt và 3 đột biến “còn sống”. Tỷ lệ đột biến ở đây là xấp xỉ 25%. Đối với 43 đột biến truyền thống, có 38 đột biến bị diệt và 5 đột biến “còn sống”. Tỷ lệ đột biến ở đây là xấp xỉ 88%. Cụ thể với từng trường hợp kiểm thử được thể hiện trong bảng 4.7.

STT Tên kiểm thử Số đột biến diệt đƣợc Số đột biến không diệt đƣợc 1 FindPivot1 37 10 2 FindPivot 2 38 9 3 FindPivot 3 35 12 4 FindPivot 4 36 11 5 FindPivot 5 15 32 6 FindPivot 6 14 33 7 PartitionPath3 37 10 8 PartitionPath 4 39 8 9 PartitionPath 5 38 9 10 QuickSort 2 14 33 11 QuickSort 3 39 8 12 QuickSort 4 15 32 13 QuickSort 5 28 19 14 QuickSort 6 36 11 15 QuickSort 7 38 9 16 QuickSort 8 15 32 17 QuickSort 9 28 19 18 QuickSort 10 36 11 19 QuickSort 11 39 8 20 QuickSort 12 15 32 21 QuickSort 13 28 19 22 QuickSort 14 36 11

Bảng 4.7 - Chất lượng 22 trường hợp kiểm thử cho SXQSort.java

Q trình MuJava phân tích các đột biến của chương trình SXQSort.java cho thấy rằng: chất lượng bộ dữ liệu thử mà chúng ta tạo ra trong 22 trường hợp kiểm thử ở trên là khá cao (tỷ lệ đột biến 88%). Nó có khả năng phát hiện được

hầu hết các lỗi có thể có trong chương trình SXQSort.java. Bên cạnh đó, đối với các đột biến bị diệt, các lỗi (lỗi mà được sửa đổi từ chương trình SXQSort.java để tạo ra đột biến đó) sẽ khơng xuất hiện trong chương trình SXQSort.java. Như vậy, MuJava đã góp phần làm tăng lịng tin của chúng ta vào tính đúng đắn của chương trình SXQSort.java và của dữ liệu thử.

KẾT LUẬN

Với cách tiếp cận dựa trên những đề xuất đã có trong lĩnh vực nghiên cứu về kiểm thử phần mềm, luận văn trình bày những nét chính trong kiểm thử phần mềm nói chung và kiểm thử đột biến nói riêng cùng với những cải tiến. Qua đó, cho thấy được tác dụng của kiểm thử đột biến không chỉ cung cấp một phương tiện để đánh giá và cải tiến chất lượng dữ liệu thử dựa trên cơng thức tính tỷ lệ đột biến, mà cịn giúp kiểm thử biết rằng khơng có các lỗi (các lỗi được sửa đổi từ PUT để tạo ra các đột biến) xuất hiện trong PUT nếu tất cả các đột biến của PUT đều bị diệt. Điều này, góp phần làm tăng sự tin tưởng của kiểm thử viên vào tính đúng đắn của PUT và của dữ liệu thử.

Luận văn đã giới thiệu hai cơng cụ mã nguồn mở miễn phí MuJava để tạo và phân tích đột biến, và JUnit để kiểm thử đơn vị, đồng thời đề xuất quy trình ứng dụng kiểm thử đột biến để kiểm thử các chương trình Java. Sử dụng kỹ thuật kiểm thử đột biến ràng buộc (chỉ lựa chọn một số toán tử đột biến) để kiểm thử chương trình sắp xếp dãy tăng dần theo thuật toán QuickSort với 22 trường hợp kiểm thử, kết quả là có 88% đột biến bị diệt, nhưng chỉ phải kiểm tra với 17,9% đột biến.

Kiểm thử đột biến là một kỹ thuật kiểm thử được khá nhiều nhà nghiên cứu quan tâm bởi khả năng ứng dụng của nó. Tuy nhiên, ngồi những vấn đề đã nêu, vẫn còn tồn tại nhiều vấn đề cần phải tiếp tục nghiên cứu. Các vấn đề về phát hiện đột biến tương đương và vấn đề Oracle. Chưa có vấn đề nào được giải quyết trong nghiên cứu này, với giả định rằng tồn tại các phương pháp thích hợp để giải quyết vấn đề này. Tuy nhiên, để tạo thuận lợi để kiểm thử đột biến chấp nhận trong ngành công nghiệp, giải pháp khả thi là cần thiết cho những vấn đề này. Phát hiện đột biến tương đương chỉ đơn giản có thể liên quan đến việc bỏ qua chúng và dựa vào tỷ lệ đột biến còn thấp để phát triển các dữ liệu thử - nếu cải tiến dữ liệu thử liên tục diễn ra, thì sẽ thu được bộ dữ liệu thử tốt nhất. Do đó, trong thời gian tới, tôi sẽ tiếp tục nghiên cứu để loại bỏ các đột biến tương đương trong số các đột biến cịn sống của chương trình, đồng thời cải tiến các trường hợp kiểm thử để đạt tỷ lệ đột biến 100%.

TÀI LIỆU THAM KHẢO

Tiếng Việt

[1] Nguyễn Thanh Bình, Hồ Văn Phi (2010), “Giải pháp kiểm thử đột biến các câu lệnh truy vấn cơ sở dữ liệu”, Tạp chí Khoa học và Cơng nghệ, Đại

học Đà Nẵng, 2(37)

[2] Nguyễn Thanh Bình, Nguyễn Quang Vũ (2009), “Ứng dụng kỹ thuật kiểm thử đột biến để kiểm thử các chương trình C-Sharp”, Tạp chí Khoa

học và Công nghệ, Đại học Đà Nẵng, 5(34).

[3] Nguyễn Văn Vỵ, Nguyễn Việt Hà (2006), Giáo trình kỹ nghệ phần mềm, Khoa CNTT, Đại học Công nghệ, ĐHQGHN.

Tiếng Anh

[4] T. A. Budd and D. Angluin (1982), “Two notions of correctness and their relation to testing”, Acta Informatica.

[5] Mattias Bybro (2003), A Mutation Testing Tool for Java Programs,

Thesis, Department of Numerical Analysis and Computer Science, Nada at the Royal Institute of Technology.

[6] M. E. Delamaro and J. C. Maldonado (1996), “Proteum - a tool for the assessment of test adequacy for C programs: User's guide”, Technical report.

[7] R. DeMillo, R. Lipton, and F. Sayward (1978), “Hints on test data selection: Help for the practicing programmer”, IEEE Computer.

[8] Yue Jia and Mark Harman (2009), “An Analysis and Survey of the Development of Mutation Testing”, Technical Report, Crest Centre, King’s College London.

[9] R. M. Hierons, M. Harman, and S. Danicic (1999), “Using Program Slicing to Assist in the Detection of Equivalent Mutants,” Software Testing, Verification and Reliability.

[10] W.E. Howden (1982), “Weak mutation testing and completeness of test sets”, IEEE Transactions on Software Engineering, 8(4).

[11] K. N. King and A. Jefferson Offutt (1991), “A Fortran language system for mutation-based software testing”, Software - Practice and Experience, 21(7).

[12] Edward William Krauser (1991), Compiler-Integrated Software Testing,

PhD thesis, Purdue University.

[13] Y. S. Ma, A. J. Offutt, and Y. R. Kwon (2002), “Inter-class Mutation Operators for Java”, in Proceedings of the 13th International Symposium on Software Reliability Engineering (ISSRE’02), Annapolis, Maryland:

IEEE Computer Society.

[14] Y.S. Ma, A. J. Offutt, and Y.R. Kwon (2004), “An Experimental Mutation System for Java”, ACM SIGSOFT Software Engineering Notes. [15] Y. S. Ma, A. J. Offutt, and Y. R. Kwon (2005), “MuJava: An Automated

Class Mutation System”, Software Testing, Verification & Reliability. [16] Y. S. Ma, A. J. Offutt, and Y. R. Kwon (2006), “MuJava: a Mutation

System for Java”, in Proceedings of the 28th international Conference on

Software Engineering (ICSE ’06), Shanghai, China.

[17] Aditya P. Mathur and W. Eric Wong (1993), Comparing the fault detection ef- fectiveness of mutation and data flow testing: An empirical study, Software Engineering Research Center, Purdue University, West Lafayette, Indiana.

[18] P. S. May (2007), Test Data Generation: Two Evolutionary Approaches to Mutation Testing, PhD Thesis, University of Kent, Canterbury, Kent.

[19] G. J. Myers (1979), The Art of Software Testing, John Wiley & Sons, Inc., New York.

[20] Jeff Offutt (1992), “Investigations of the software testing coupling effect”,

ACM Transactions on Software Engineering and Methodology.

[21] Jeff Offutt, W. M. Craft (1996), Using Compiler Optimization Techniques

to Detect Equivalent Mutants, George Mason University.

[22] Jeff Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf (1996), An Experimental Determination of Sufficient Mutant Operators, George Mason University, pp. 4-6.

[23] Jeff Offutt and Stephen D. Lee (1996), An Empirical Evaluation of Weak

Mutation, George Mason University.

[24] Jeff Offutt and J. Pan (1997), “Automatically Detecting Equivalent Mutants and Infeasible Paths”, Software Testing, Verification and Reliability, vol. 7.

[25] Jeff Offutt, Gregg Rothermel, Roland H. Untch, and Christian Zapf (1993), An Experimental Evaluation of Selective Mutation, Baltimore,

MD.

[26] A. J. Offutt and R. H. Untch (2001), “Mutation 2000: Uniting the Orthogonal”, in Proceedings of the 1st Workshop on Mutation Analysis (MUTATION’ 00), published in book form, as Mutation Testing for the New Century.

[27] Jeff Tian (2005), Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement, Wiley-IEEE Computer

Society Press.

[28] Maryam Umar (2006), An Evaluation Of Mutation Operators For Equivalent Mutants, Department of Computer Science King’s College,

London.

[29] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold (1993), “Mutation analysis using mutant schemata”, International Symposium on

Software Testing and Analysis.

[30] W. E. Wong and A. P. Mathur (1995), “Reducing the Cost of Mutation Testing: An Empirical Study”, Journal of Systems and Software, vol. 31. [31] SourceForge, “JUnit”, http://www.junit.org, 2009 .

Một phần của tài liệu (LUẬN VĂN THẠC SĨ) Kỹ thuật kiểm thử đột biến và ứng dụng để kiểm thử các chương trình Java (Trang 70 - 76)

Tải bản đầy đủ (PDF)

(76 trang)