Mô hình một mạng nơron 4 tầng truyền tới

Một phần của tài liệu Bài toán nội suy và mạng Nơron RBF (Trang 32 - 34)

Hình 1 .1 Minh họa bài toán nội suy hàm một biến

Hình 1.10 Mô hình một mạng nơron 4 tầng truyền tới

Mỗi một mạng nơron khác nhau sẽ có số lượng nơron khác nhau cũng như sự kết nối giữa chúng là không giống nhau.

Các trọng số kết nối

Dùng cho liên kết các tầng nơron khác nhau và có vai trò quan trọng trong hoạt động của một mạng nơron, nó cũng là sự mô tảđặc tính riêng của mỗi mạng.

Quá trình học/huấn luyện của mạng nơron

Trong số nhiều đặc tính của mạng nơron đặc tính quan trọng nhất là tự cải tiến làm việc của nó thông qua việc học. Việc cải tiến này theo thời gian phù hợp với một độ đo được quy định trước. Mạng nơron học nhờ điều chỉnh trọng số kết nối wi và ngưỡng . Một cách lý tưởng mạng có tri thức tốt hơn sau mỗi lần lặp của quá trình học.

Có nhiều định nghĩa về sự học, ởđây ta theo định nghĩa của Mendel và Mc Cloren (1970) về học trong mạng nơron: “Học là quá trình qua đó các tham số tự do của một mạng nơron được sửa đổi thích ứng qua một quá trình tích luỹ kinh nghiệm liên tục trong một môi trường mà mạng bị tác động”.

X1 X2 Xn y Tầng vào Tầng ẩn Tầng ra

Xây dựng mạng nơron

Khi xây dựng mạng nơron ta thường theo các bước sau:

Xây dựng kiến trúc mạng: Xem xét có bao nhiêu tầng mà mạng chứa đựng, và chức năng của chúng là gì. Kiến trúc cũng cho biết có bao nhiêu kết nối được tạo ra giữa các nơron trong mạng, và chức năng của những kết nối này để làm gì.

Huấn luyện mạng: Tại bước này các trọng số kết nối giữa các nơron sẽ liên tục thay đổi giá trị trong quá trình huấn luyện mạng, và chúng sẽ có giá trị cố định khi quá trình huấn luyện thành công.

Kiểm tra hoạt động của mạng: Đây là bước cuối cùng nhưng cũng rất quan trọng trong quá trình xây dựng một mạng nơron. Người ta sẽ đưa vào tập các dữ liệu thử và chờđợi kết quả ởđầu ra. Mạng nơron được xác định là tốt nếu như kết quả dữ liệu ởđầu ra đúng như những gì mà người thiết kế mong đợi.

d) Phân loại mạng nơron

Các mạng nơron có kiến trúc khác nhau và cách huấn luyện khác nhau cho các tính năng khác nhau. Ngoài những loại mạng với tính năng điển hình được trình bày trong nhiều cuốn sách (xem [28,30,31,38]), các kiểu mạng được kết nối với kiến trúc phong phú trong các ứng dụng cụ thể. Để có thuật ngữ chung, người ta thường phân loại mạng nơron dựa trên kiểu liên kết truyền tín hiệu hoặc số tầng.

Theo kiểu liên kết nơron

Người ta phân biệt tín hiệu được truyền tới hay có hồi quy. Trong mạng nơron truyền tới (feel-forward neural network) các liên kết nơron truyền tín hiệu theo một hướng nhất định không tạo thành đồ thị có chu trình (Directed Acyclic Graph) với các đỉnh là các nơron, các cung là các liên kết giữa chúng.

Trong mạng nơron hồi quy (recurent neural network) có các liên kết nơron tạo thành chu trình. Các thông tin ra của các nơron được truyền lại cho nó hoặc các nơron đã góp phần kích hoạt chúng.

Theo số lớp/tầng

Các nơron có thể tổ chức lại thành các lớp sao cho mỗi nơron của lớp này chỉ được nối với các nơron ở lớp tiếp theo, không cho phép các liên kết giữa các nơron trong cùng một lớp, hoặc từ nơron lớp sau lên nơron lớp trước. Ở đây cũng không cho phép các liên kết nơron nhảy qua một lớp.

a) Mạng nơron nhiều lớp b)Mạng nơron truyền tới c) Mạng nơron hồi qui

Một phần của tài liệu Bài toán nội suy và mạng Nơron RBF (Trang 32 - 34)

Tải bản đầy đủ (PDF)

(122 trang)