L ỜI CẢM ƠN
3 Hướng phát triển tiếp theo của lĩnh vực nghiên cứu
Để khắc phục và bổ khuyết cho những hạn chế của đề tài, đồng thời phát huy thành công và những điểm mới trong nghiên cứu trên, tác giả dự định sẽ tiếp tục hướng nghiên cứu như sau:
- Nghiên cứu lý thuyết và áp dụng BĐK NNC ở trên cho các đối tượng AUV khác nhau, trong các điều kiện và môi trường làm việc với yêu cầu hoạt động phức tạp hơn, nâng cao chất lượng điều khiển.
- Thực nghiệm các kết quả nghiên cứu trên mô hình AUV và tiến tới ứng dụng vào thực tiễn, góp phần đổi mới công nghệ, sáng tạo các thuật toán, kỹ thuật điều khiển cùng lĩnh vực.
Cụ thể, tác giả dự định cùng các cộng sự nghiên cứu điều khiển AUV thực hiện nhiệm vụ tự động tránh vật cản, đi theo phương tiện dẫn đường (tàu mẹ, AUV khác), đi theo quỹ đạo phức tạp hơn, điều khiển nhóm nhiều AUV…
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC LIÊN QUAN ĐẾN LUẬN ÁN TIẾN SĨ
1. Đăng trên tạp chí
[1] Chau Giang Nguyen, Viet Anh Pham, Duy Anh Nguyen, Heading and Depth Control of Autonomous Underwater Vehicles via Adaptive Neural Network Controller, AETA 2017-Recent Advances in Electrical Engineering and Related Sciences, 776, 2017, ISSN 1876-1100, ISSN 1876-1119 (electronic). [2] Dinh Due Vo, Viet Anh Pham, Phung Hung Nguyen, Duy Anh Nguyen,
Designing a PID controller for ship autopilot system, AETA 2018-Recent Advances in Electrical Engineering and Related Sciences, 618, 2018, ISSN 1876-1100. ISSN 1876-1119 (electronic).
[3] Long Le Ngoc Bao, Pham Viet Anh, Duy Anh Nguyen, Designing a controller for Autonomonus Underwater Vehicles Using Decoupled Model and Fuzzy Logic, AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences, vol 685, 42, 2019, ISSN 1876-1100, ISSN 1876-1119 (electronic). [4] Phạm Việt Anh, Nguyễn Phùng Hưng, Lê Văn Ty, Điều khiển AUV di chuyển
bám theo địa hình đáy dung mạng nơ-ron nhân tạo, Tạp chí Giao thông Vận tải, tháng 05/2021, ISSN 2615-9751, trang 91-97.
2. Đăng trên kỷ yếu hội nghị, hội thảo
[5] Chau Giang Nguyen, Viet Anh Pham, Duy Anh Nguyen, The Hybrid Neural Adaptive Controller for Heading and Depth Control of Autonomous Underwater Vehicles, 21st International Conference on Mechatronics Technology October 20 – 23, 2017 in Ho Chi Minh City, Vietnam.
[6] Dinh Due Vo, Viet Anh Pham, Duy Anh Nguyen, Design an Adaptive Autopilot for an Unmanned Surface Vessel, Proceeding 2018 4th International Conference on Green Technology and Sustainable Development, GTSD 2018, 2018.
[7] Viet Anh Pham, Phung Hung Nguyen, Van Ty Le, Track and Depth Control of Autonomous Underwater Vehicle using Adaptive Neural Networks,
submitted to the International Conference of Maritime Science & Technology
TÀI LIỆU THAM KHẢO Tiếng Việt
[1] Nguyễn Như Hiền và Lại Khắc Lãi (2007), Hệ mờ và nơ ron trong kỹ
thuật điều khiển, Nhà xuất bản Khoa học tự nhiên và công nghệ Hà Nội.
[2] Nguyễn Hoàng Dũng (2011), Điều khiển hệ phi tuyến dựa trên giải thuật feedforward – feedback, Tạp chí Khoa học 2011: 19a 17-26, Trường Đại học Cần Thơ.
[3] Nguyễn Phùng Hưng (2013), Mạng nơ-ron nhân tạo- ứng dụng trong
điều khiển phương tiện thủy, Nhà xuất bản Khoa học và kỹ thuật.
[4] Phạm Hữu Đức Dục (2008), Mô hình điều khiển dự báo và ứng dụng
điều khiển thích nghi hướng tàu thủy, Tạp chí Khoa học và công nghệ, số 1 (45), tập 1.
[5] Nguyễn Doãn Phước (2007), Lý thuyết điều khiển nâng cao, Nhà xuất bản khoa học và kỹ thuật.
[6] Nguyễn Đình Thúc (2008), Trí tuệ nhân tạo – lập trình tiến hóa, Nhà xuất bản Giáo dục.
[7] Nguyễn Đông (2016), Phân tích thuỷđộng lực học và thiết kế hệ thống
điều khiển theo công nghệ hướng đối tượng cho phương tiện tự hành
dưới nước, Luận án Tiến sĩ kỹ thuật, Chuyên ngành Cơ chất lỏng, MS 62440108, Trường ĐH Bách khoa Hà Nội.
[8] Võ Hồng Hải, Nguyễn Phùng Hưng (2009). Điều khiển hướng đi phương tiện ngầm tự hành bằng mạng nơron nhân tạo thích nghi. Tạp chí Giao thông Vận tải 08/2009, tr.39-41.
[9] Nguyễn Phùng Hưng, Võ Hồng Hải (2009). Điều khiển hướng đi và độ sâu phương tiện ngầm tự hành bằng mạng nơron nhân tạo thích nghi. Tạp chí KHCN Hàng hải, số 18, 06/2009, tr.32-36.
[10] Tôn Thiện Phương, Trần Ngọc Huy (2019). Báo cáo phân tích xu
hành phục vụ quan trắc môi trường, khảo sát sông hồ và cứu hộ cứu nạn”. Sở KHCN TP Hồ Chí Minh.
Tiếng Anh
[11] Sabiha Wadoo & Pushkin Kachroo, Autonomous Underwater Vehicles (modeling, control design, and simulation), printed by (CRC) CRC Press Taylor & Francis Group © 2011.
[12] Technology and Applications of Autonomous Underwater Vehicles
edited by Gwyn Griffiths, Taylor & Francis Group © 2003 / A series of book in oceanology ISSN 1561-5928.
[13] Advance in Unmanned Marine Vehicles edited by GN Roberts & R Sutton, IEE Control Engineering Series 69 (Series editors: Professor D. Atherton & Professor S. Spurgeon).
[14] Bruno Borvic, Ognjen Kuljaca and Frank L. Lewis Neural Net Underwater Vehicle Dynamic Position Control, IEEE.
[15] Khac Duc Do, Jie Pan, Control of Ships and Underwater Vehicles (Design for underactuated and nonlinear marine systems) School of Mechanical Engineering – The University of Western Australia.
[16] Underwater Acoustic Digital Signal Processing and Communication Systems edited by Robert S.H.Istepanian, Brunel Univesity & Milica Stojanovic / MIT – Kluwer Academic Publishers.
[17] Aage, C. and Smitt, L.W. (1994). Hydrodynamic manoeuvrability data of a flatfish type AUV,Proceeding of the IEEE Conference Ocean’94,
[18] Brest, France, Aage, C. (1997). Manoeuvring simulations and trail of flatfish type AUV. Department of Naval Architecture and Offshore Engineering, Technical University of Denmark, Larsen, M.B., Department of Automation, Technical University of Denmark, OMAE’97, Vol.IB, Tokyo.
[19] R. Cristi, F.A. Papoulias, A.J. Healy, Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IEEE Journal of Ocean Engineering, 15(3), 1990, 152-160.
[20] Y. Nakamura, S. Savant, Nonlinear tracking control of autonomous underwater vehicles, in Proceeding of the 1992 IEEE Iternational Conference on Robotics and Automation, Nice, France, May 1992, A4- A9.
[21] Lawrence C. Langebrake, AUV sensors for marine research, University of South Florida, 140 Seventh Avenue South, St Petersburg, FL 33701-5016, USA.
[22] Bjerrum, A. (1997). Autonomous Unrderwater Vehicles for offshore surveys. Technologies for Remote Subsea Operations-Forum 1997, Aberdeen.
[23] Chance, TS. Et al. (2000). The Autonomous Underwater Vehicles: A Cost-effective Alternative to Deep-towed Technology. Integrated Coastal Zone Management, ICG Publishing Ltd.
[24] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
[25] N.E. Leonard, “Control synthesis and adaptation for an underactualed autonomous underwater vehicles”, IEEE Journal of Ocean Engineering, vol.20, no.2, pp.211-220, 1995.
[26] Thor I. Fossen (1994), Guidance and Control of Ocean Vehicles, John Wiley and Sons, Ltd.
[27] Prestero, T.,Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. University of California at Davis (1994)
[28] Shahaji, L., Some studies on Control of Autonomous Underwater Vehicles. Swami Ramanand Teerth Marathwada University (2017)
[29] Londhe P., Santhakumar M., Patre B., Waghmare L., Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme. In: IEEE Journal of Oceanic Engineering, vol. 42, no. 1, pp. 13-28 (2017)
Control (2001)
[31] Thor I. Fossen, Maritime Control Systems - Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim, Norway, ISBN 82-92356-00-2 (2002).
[32] Regardt, B.: Modelling and Simulation of an Autonomous Underwater Vehicle. University of Stellenbosch, South Africa (2009)
[33] R. Prasanth Kumar, A. Dasgupta, and C. S. Kumar, “Robust trajectory
control of underwater vehicles using time delay control law,” Ocean
Engineering, vol. 34, no. 5-6, pp. 842–849, 2007.
[34] A. Mazumdar and H. H. Asada, “A compact underwater vehicle using highbandwidth coanda-effect valves for low speed precision maneuvering in cluttered environments” in 2011 IEEE International Conference on Robotics and Automation, pp. 1544–1550, 2011.
[35] A. Thomas, M. Milano, M. G. G’Sell, K. Fischer, and J. Burdick, “Synthetic Jet Propulsion for Small Underwater Vehicles” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 181–187, April 2005.
[36] P. Krishnamurthy, F. Khorrami, J. de Leeuw, M. E. Porter, K. Livingston, and J. H. Long, “A multi-body approach for 6DOF modeling of Biomimetic Autonomous Underwater Vehicles with simulation and experimental results” in 2009 IEEE International Conference on Control Applications, pp. 1282–1287, 2009.
[37] P. R. Bandyopadhyay, “Trends in biorobotic autonomous undersea vehicles” IEEE J. Ocean. Eng., vol. 30, no. 1, pp. 109–139, Jan. 2005.
[38] A. Mazumdar, M. Lozano, A. Fittery, and H. Harry Asada, “A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems” in 2012 IEEE International Conference on Robotics and Automation, pp. 2818–2823, 2012.
[39] F. Giorgio Serchi, A. Arienti, and C. Laschi, “Biomimetic Vortex Propulsion: Toward the New Paradigm of Soft Unmanned Underwater
Vehicles”, IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 484– 493, Apr. 2013.
[40] X. Deng and S. Avadhanula, “Biomimetic Micro Underwater Vehicle with Oscillating Fin Propulsion: System Design and Force Measurement” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3312–3317, April 2005.
[41] D. Yoerger, J. G. Cooke, and J.-J. E. Slotine, “The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design”, IEEE J. Ocean. Eng., vol. 15, no. 3, pp. 167– 178, Jul. 1990.
[42] A. Mazumdar and H. Asada, “Valve-PWM control of integrated pump- valve propulsion systems for highly maneuverable underwater vehicles” in American Control Conference (ACC), pp. 5414–5420, 2012. 88
[43] M. Krieg and K. Mohseni, “Thrust Characterization of a Bioinspired Vortex Ring Thruster for Locomotion of Underwater Robots”, IEEE J. Ocean. Eng., vol. 33, no. 2, pp. 123–132, Apr. 2008.
[44] M. Krieg, A. Pitty, M. Salehi, and K. Mohseni, “Optimal Thrust Characteristics of a Synthetic Jet Actuator for Application in Low Speed Maneuvering of Underwater Vehicles” in Proceedings of OCEANS 2005 MTS/IEEE, pp. 1–6, 2005.
[45] D. Brutzman, T. Healey, D. Marco, and B. McGhee, “The Phoenix autonomous underwater vehicle”, Artif. Intell. Mob. Robot. Case Stud. Success. Robot Syst., pp. 323–360, 1998.
[46] D. Davis, “Precision maneuvering and control of the Phoenix Autonomous Underwater Vehicle for entering a recovery tube”, Naval Postgraduate School, MONTEREY, CA, 1996.
[47] R. B. Byrnes, A. J. Healey, R. B. McGhee, M. L. Nelson, S. Kwak, and D. P. Brutzman, “The Rational Behavior Software Architecture for Intelligent Ships”, Nav. Eng. J., vol. 108, no. 2, pp. 43–55, 1996.
[48] D. Brutzman and M. Compton, “AUV Research at the Naval Postgraduate School”, Sea Technol. J., vol. 32, no. 12, pp. 35–40, 1991.
[49] D. Marco, A. Healey, and R. McGhee, Autonomous underwater vehicles: Hybrid control of mission and motion. pp. 169–186, Springer US, 1996.
[50] D. Brutzman, “A virtual world for an autonomous underwater vehicle”, Naval Postgraduate School, MONTEREY, CA, 1994.
[51] T. Furukawa, “Reactive obstacle avoidance for the remus autonomous underwater vehicle utilizing a forward looking sonar”, Naval Postgraduate School, MONTEREY, CA, 2006.
[52] A. Healey, “Obstacle avoidance while bottom following for the REMUS autonomous underwater vehicle” in IFAC Symposium on Intelligent Autonomous Vehicles, 2004. 89
[53] D. Hemminger, “Vertical Plane Obstacle Avoidance and Control of the REMUS Autonomous Underwater Vehicle Using Forward Looking Sonar”, Naval Postgraduate School, MONTEREY, CA, 2005.
[54] P. Patron, E. Miguelanez, Y. R. Petillot, D. M. Lane, and J. Salvi, “Adaptive mission plan diagnosis and repair for fault recovery in autonomous underwater vehicles” in OCEANS 2008, pp. 1–9, 2008.
[55] E. Miguelanez, P. Patron, K. E. Brown, Y. R. Petillot, and D. M. Lane, “Semantic Knowledge-Based Framework to Improve the Situation Awareness of Autonomous Underwater Vehicles”, IEEE Trans. Knowl. Data Eng., vol. 23, no. 5, pp. 759–773, May 2011.
[56] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion”, IEEE J. Ocean. Eng., vol. 24, no. 2, pp. 237–252, Apr. 1999.
[57] K. Mohseni, “Zero-mass Pulsatile Jets for Unmanned Underwater Vehicle Maneuvering” in AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit, pp. 1–9, 2004.
[58] E. Lee, “Design of a soft and autonomous biomimetic micro-robotic fish” in 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 240–247, 2010.
[59] T. Prestero, “Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle”, MIT, 2001.
[60] G. Martins, A. Moses, M. J. Rutherford, and K. P. Valavanis, “Enabling intelligent unmanned vehicles through XMOS Technology”, J. Def. Model. Simul. Appl. Methodol. Technol., vol. 9, no. 1, pp. 71– 82, Jan. 2011.
[61] Uzair Ansari, Abdulrahman H. Bajodah, Autonomous Underwater Vehicles Attitude control using Neuro-Adaptive Generalized Dynamic Inversion¸International Federation of Automatic Control online 52-29 (2019), pp. 103-109.
[62] Jiemei Zhao, Neural Network Predictive Control for Autonomous Underwater Vehicle with Input Delay, Journal of Control Science and Engineering Volume 2018, ID 2316957.
[63] Behdad Geranmehr, Kamran Vafaee, Hybrid Adaptive Neural Network AUV Controller Design with Sliding Mode Robust Term, International Journal of Maritime Technology, Vol.7 (2017), pp.49-55.
[64] Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi, Adaptive Neural Network Control of Autonomous Underwater Vehicles,
International Journal of Elwctrical and Computer Engineering, Vo;.6, No.7, 2012, pp.866-871.
[65] Ansari, U. and Bajodah, A.H. (2017a). Robust generalized dynamic inversion based control of autonomous underwater vehicles, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 1475090217708640.
[66] Aras M.S.M., Abdullah S.S., Othman S.Y.B., Sulaiman M., Basar M.F., Zambri M.K.M., and Kamarudin M.N. (2016). Fuzzy logic
controller for depth control of underwater remotely operated vehicle. Journal of Theoretical & Applied Information Technology, 91(2).
[67] Cui, R., Yang, C., Li, Y., and Sharma, S. (2017). Adaptive neural network control of auvs with control input nonlinearities using reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(6), 1019–1029.
[68] Farhan M., Bhatti A., Kamal W., and Yousafzai I. (2017). Sliding mode based mimo control of autonomous underwater vehicle. In Control Conference (ASCC), 2017 11th Asian, 2899–2904. IEEE.
[69] Khodayari, M.H. and Balochian, S. (2015). Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. Journal of Marine Science and Technology, 20(3), 559–578.
[70] Liu, J. (2013). Radial Basis Function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation. Springer Science & Business Media.
[71] McEwen, R. and Streitlien, K. (2001). Modeling and control of a variable-length AUV. Proc 12th UUST.
[72] W. Naeem, W., Sutton, R., and Ahmad, S. (2003). LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. International Federation on Automatic Control Journal.
[73] Nelson R. (1997). Flight Stability and Automatic Control. McGraw- Hill, New York, second edition.
[74] M.R. Ramezani-al and Tavanaei - Sereshki Z. (2018). An adaptive sliding mode controller with a new reaching law for tracking problem of an autonomous underwater vehicles. Transactions of the Institute of Measurement and Control, 0142331218790791.
[75] Rath B.N., Subudhi B., Filaretov V., and Zuev A. (2017). A new backstepping control design method for autonomous underwater vehicle in diving and steering plane. In Region 10 Conference,
TENCON 2017-2017, IEEE, 1984–1987. IEEE.
[76] Rout, R. and Subudhi, B. (2017). Inverse optimal selftuning PID control design for an autonomous underwater vehicle. International Journal of Systems Science, 48(2), 367–375.
[77] Ruiz-Duarte, J.E. and Loukianov, A.G. (2015). Higher order sliding mode control for autonomous underwater vehicles in the diving plane. IFAC-PapersOnLine, 48(16), 49–54.
[78] Yao F., Yang C., Liu X., and Zhang M. (2018). Experimental evaluation on depth control using improved model predictive control for autonomous underwater vehicle (AUVs). Sensors, 18(7), 2321.
[79] Yildiz, O., G¨okalp, R.B., and Yilmaz, A.E. (2009). A review on motion control of the underwater vehicles. In Electrical and Electronics Engineering, 2009. ELECO 2009. International Conference on, II–337. IEEE.
[80] Chu, Z. and D. Zhu. (2016), Adaptive sliding mode heading control for autonomous underwater vehicle including actuator dynamics in OCEANS 2016- Shanghai. 2016. IEEE.
[81] Geranmehr, B. and S.R. Nekoo, (2015), Nonlinear suboptimal control of fully coupled non-affine sixDOF autonomous underwater vehicle using the statedependent Riccati equation. Ocean Engineering, 2015. 96: p. 248-257.
[82] Geranmehr, B. and S.R. Nekoo. (2014), The nonlinear suboptimal diving control of an autonomous underwater vehicle. in Robotics and Mechatronics (ICRoM), 2014 Second RSI/ISM International Conference on. 2014. IEEE.
[83] Geranmehr, B. and S.R. Nekoo. (2014) The statedependent set-point regulation and tracking control of horizontal motion of AUV. in Robotics and Mechatronics (ICRoM), Second RSI/ISM International Conference on. 2014. IEEE.
for 6-DOF Control of an AUV Using Saturation Functions. in Proceedings of the 3rd International Conference on Intelligent Computational Systems.
[85] T. Wang, H. Gao, and J. Qiu, “A combined adaptive neural network
and nonlinear model predictive control for multirate networked industrial process control,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 27, no. 2, pp. 416– 425, 2016.
[86] Lewis, F.L., K. Liu, and A. Yesildirek, (1995) Neural net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 1995. 6(3): p. 703-715.
[87] Daachi, M., et al., (2015) A radial basis function neural network adaptive controller to drive a powered lower limb knee joint orthosis. Applied Soft Computing, 2015. 34: p. 324-336.
[88] Lei, X. and P. Lu, (2014) The adaptive radial basis function neural network for small rotary-wing unmanned aircraft. IEEE Transactions on Industrial Electronics, 2014. 61(9): p. 4808-4815.
[89] Fateh, M.M., S.M. Ahmadi, and S. Khorashadizadeh, (2014) Adaptive RBF network control for robot manipulators. Journal of AI and Data Mining, 2014. 2(2): p. 159-166.
[90] Chu, Y. and J. Fei, (2015) Adaptive global sliding mode control for MEMS gyroscope using RBF neural network. Mathematical Problems in Engineering, 2015.
[91] Slotine, J.-J.E. and W. Li, (1991) Applied nonlinear control. Vol. 199. prentice-Hall Englewood Cliffs, NJ.
[92] Xu Yuru, Xiao Kun, “Technology development of autonomous ocean vehicle”, Journal of Automation, vol. 33, no. 5, pp.518-521, 2007.
[93] Xu Yuru, Pang Yongjie, Wan Lei, Sun Yushan, “AUV-state-of-the-art and prospect”, CAAI Transactions on Intelligent Systems, vol. 1, no. 1, pp.9-16, 2006.
Underwater.Vehicles Based on Feedforward Neural Networks’’. Vol. 4, Issue 3, pp 107-118,2007.
[95] A. J. Healey and D. Lienard, “Multivariable sliding mode control for autonomous diving and steering o f unmanned underwater vehicles” IEEE Journal of Oceanic Engineering, vol. 18, no. 3,pp. 327-339, 1993.
[96] D. Xu, W. Yan, and Y. Shi, “Nonlinear variable structure double mode control of autonomous underwater vehicles”, Proc. IEEE International Symposium on Underwater Technology, pp. 425-430, Tokyo, May 23- 26, 2000.
[97] K. Mukherjee, I. N. Kar, and R. K. P. Bhatt, “Region tracking based
control of an autonomous underwater vehicle with input delay,” Ocean
Engineering, vol. 99, pp. 107–114, 2015.
[98] J. Nie, J. Yuh, E. Kardash, and T. I. Fossen, “Onboard sensor-based adaptive control of small UUVs in the very shallow water”, Proc. IFACControl Applications in Marine Systems, Fukuoka, Japan, pp. 201-206, 1998.
[99] N. Kato, “Applications of fuzzy algorithm to guidance and control of underwater vehicles”, Underwater Robotic Vehicles: Design and Control, J. Yuh (Ed.), TSI: Albuquerque, 1995.
[100] Huanan Yu, Jun Dai, “Control of autonomous underwater vehicle using fuzzy logic tuned by genetic algorithm”, Journal of Harbin Engineering University, vol. 23, no. 5, pp.12-15, 2002.
[101] F.L.Lewis, S.Jagannathan and A. Yesildirek , “Neural Network Control of Robot Manipulators and Nonlinear systems”, Taylor & Francis, 1999.
[102] Ahmad Forouzantabar, Ahmadreza Khoogar, Mohammad Javade Fakharzadegan, “Controlling a New Biped Robot Model Since Walking