độ biến động giá cổ phiếu trên thị trường trong kỳ
Để đo lường quan hệ của mức độ biến động trong kỳ của giá cổ phiếu ngân hàng trên thị trường với các yếu tố vĩ mô và các yếu tố liên quan đến đại dịch trong kỳ, tác giả đề xuất mô hình hồi quy đa biến như dưới đây:
Phương trình 4. Phương trình hồi quy đa biến nghiên cứu tác động đến mức độ biến động giá cổ phiếu ngân hàng
CVp(i,t) = α + β1GDP(t)+ β2CPI(t) + β3Mls(t) + β4 CVca(t) + β5DN(t) + ε(i,t) Trong đó:
+ Biến phụ thuộc CVp(i,t) là hệ số biến thiên của giá cổ phiếu i trong quý t.
+ Biến độc lập:
o GDP(t) là mức tăng trưởng GDP trong quý t so với cùng kỳ năm trước
o CPI(t) là mức thay đổi CPI trong quý t so với cùng kỳ năm trước o Mls(t) là lãi suất trung bình trong quý t
o CVca(t) là hệ số biến thiên của số ca mắc mới COVID-19 trong quý t
o DN(t) là số doanh nghiệp dừng hoạt động trong quý t + ε(i,t) là phần dư
Với phương trình này, ta đo lường được với mỗi đơn vị thay đổi của các biến độc lập, biến phụ thuộc là hệ số biến thiên của giá cổ phiếu mỗi quý sẽ tăng lên hoặc giảm đi bao nhiêu đơn vị. Mức độ tương quan sẽ được thể hiện bởi các hệ số hồi quy β1, β2, β3, β4, β5.
Trong mô hình này, tác giả sử dụng một đại lượng thống kê là hệ số biến thiên để đo lường mức độ biến động giá trong kỳ của các cổ phiếu ngân hàng. Như vậy, các giả thuyết H1b, H2b, H3b, H4b, H5b được kiểm nghiệm.
Thông thường, độ lệch chuẩn, với ý nghĩa là độ dao động của một tập dữ liệu quanh giá trị trung bình của tập đó, được xem là thước đo mức độ biến động của tập dữ liệu. Tuy nhiên, trong mô hình nghiên cứu này, các tập dữ liệu cổ phiếu của các ngân hàng có giá trị trung bình rất khác nhau, nên việc sử dụng hệ số biến thiên bằng cách lấy độ lệch chuẩn chia cho giá trị trung bình giúp tác giả có thể đo lường biến số đại diện cho mức độ biến động giá cổ phiếu của các ngân hàng trên thị trường một cách chính xác hơn.
Như vậy, việc sử dụng hệ số biến thiên sẽ giảm bớt độ lệch của mẫu dữ liệu quan sát, giúp cho việc ước lượng mức độ biến động giá cổ phiếu được khách quan và đáng tin cậy hơn.
Ngoài ra, tác giả cũng sử dụng các biến được điều chỉnh là lãi suất trung bình trong quý, và hệ số biến thiên của số ca mắc trong quý để phù hợp với việc đánh giá các ảnh hưởng lên hệ số biến thiên của giá cổ phiếu các NHTM niêm yết trong quý.
3.3.3.1. Kiểm định mô hình hồi quy đa biến
−Kiểm định tự tương quan
Tương tự như các mô hình nghiên cứu ảnh hưởng đến giá cổ phiếu ngân hàng, để tránh trường hợp nhận định sai lầm về ý nghĩa thống kê của các hệ số hồi quy đạt được trong mô hình nghiên cứu đã xây dựng, tác giả tiến hành kiểm định hiện tượng tự tương quan.
Ở mô hình này, các phương pháp nhận biết hiện tượng tự tương quan được tác giả sử dụng cũng là phương pháp kiểm định Wooldridge.
−Kiểm định đa cộng tuyến
Cũng giống như mô hình nghiên cứu ảnh hưởng đến giá cổ phiếu ngân hàng trên thị trường, mô hình nghiên cứu mức độ biến động giá cổ phiếu được xây dựng cũng là
mô hình hồi quy đa biến, sử dụng dữ liệu bảng. Do vậy, tác giả cũng sẽ kiểm định hiện tượng đa cộng tuyến để đo lường sự tương quan giữa các biến độc lập với nhau.
Các phương pháp được sử dụng cũng tương tự như mô hình trên, đó là sử dụng ma trận tương quan và hệ số phóng đại phương sai (VIF).
−Kiểm định phương sai sai số thay đổi
Với hiện tượng này, tương tự như các mô hình trước, tác giả sẽ sử dụng kiểm định Breusch-Pagan để kiểm tra.
3.3.3.2. Khắc phục các hiện tượng lỗi
Để khắc phục các hiện tượng không mong muốn gây ảnh hưởng đến kết quả của nghiên cứu, tác giả sẽ thực hiện các phương pháp khắc phục hiện tượng tự tương quan và hiện tượng phương sai sai số thay đổi.
Phương pháp khắc phục lỗi được thực hiện với mô hình đa biến này cũng tương tự với mô hình nghiên cứu giá cổ phiếu ngân hàng ở Mục 3.3.2.3 do các hạn chế của mẫu dữ liệu nhỏ.
Cụ thể, để khắc phục hiện tượng tự tương quan, trước hết tác giả sử dụng phương pháp chuyển hóa sai phân bậc 1.
Tiếp theo, trong trường hợp hiện tượng phương sai sai số thay đổi xảy ra, tác giả sử dụng ước lượng bằng mô hình sai số chuẩn mạnh.
Như vậy, dựa trên mô hình lý thuyết nghiên cứu về mối quan hệ của các biến, tác giả xây dựng các mô hình hồi quy tuyến tính để đo lường mức độ tương quan giữa chúng trong mẫu dữ liệu được sử dụng. Cụ thể, để đo lường các tác động của đại dịch COVID-19 đến giá cổ phiếu của 16 NHTM niêm yết, ta sẽ có 03 mô hình hồi quy tuyến tính như sau:
−Mô hình đơn biến nghiên cứu ảnh hưởng trực tiếp của số ca mắc COVID- 19 trong ngày đến giá cổ phiếu trên thị trường
−Mô hình đa biến nghiên cứu ảnh hưởng gián tiếp của đại dịch COVID-19 đến giá cổ phiếu trên thị trường
−Mô hình đa biến nghiên cứu ảnh hưởng gián tiếp của đại dịch COVID-19 đến mức độ biến động giá cổ phiếu trên thị trường trong kỳ
Đồng thời, tác giả cũng tiến hành các kiểm định mô hình cần thiết để có biện pháp khắc phục, tránh xảy ra hiện tượng hồi quy giả mạo hay các sai lệch trong kết quả nghiên cứu.
Kết quả nghiên cứu thống kê mô tả và định lượng bằng phương pháp hồi quy được báo cáo trong Chương 4. Với các mô hình nghiên cứu về ảnh hưởng trực tiếp và gián tiếp của đại dịch COVID-19 như đã trình bày, kết quả nghiên cứu cũng gợi mở ra nhiều mối tương quan thú vị giữa các nhân tố độc lập, và giữa các nhân tố này với sự biến động giá trong kỳ của các cổ phiếu NHTM niêm yết trên thị trường.
CHƯƠNG 4. KẾT QUẢ NGHIÊN CỨU