Qrrl trjrc 3 \'rirr t'tit tltirttlt 5.9 13,17 thrirng

Một phần của tài liệu Tạp chí toán học và tuổi trẻ tháng 3 năm 2010 số 393 (Trang 31)

- IK+ MB M I= IK (dpcm) tr

Qrrl trjrc 3 \'rirr t'tit tltirttlt 5.9 13,17 thrirng

it,irr< titrit -lk I tltrt)tt,q) nti klrirt.g t'6 tltrittg irir,t t1tr,t ttint llti trurtii r'ltiint 1t)tin t'lrirtr ttitrt

c'i ltrqt,q binlt nlttt ltrtn.

Phdp chi'ng minh di6u ndy kh6 kh6. Mdi d6n gAn clAy Mubry vi Deierman rn6i giAi quy6t n6i viCc chirng rninh cho rngi khA nIng.

Dcicnnun di nhanh ch6rrg tim duoc loi giAi

cho bii to6n b6nh cat UO'i 3 drrdng thdnh 6

phAn "rn6t trong nhffng loi gi6i thdng minh nhAt rnd t6i chua til'ng tliAy", Mabry nh6 l4i. Ti6p theo hai nhd to6n hoc dd chrh'ng rninh

thinh c6ng cho trud'ng hop 10 phAn. Sau d6 ho

dd chfLng to ring k€t qui cira trudng ho-p cit ':

bang 3 dtLong cring gi6ng nhu k6t quA cfia

c6ch cit bang 7 duo'ng. D6 td nguoi l6y phin

c6 chila tdrn c6 lu'ong b6nh nhi6u hon. Tr6n dd

thdrrg loi hai nhd to6n hoc nghT ring minh d5

p}iit minh,rn6t kT thudt cho phdp x5c dinh m6t

ldn cho tdt ci rnoi trud'ng ho'p xliy ra dugc

bing c6ch so s6nh di6n tich c6c hinh ddi dinh,

va c6ng chc. hieu sO. Ve ngu1,6n tIc, kT thuflt ld

don gian.Ve thuc hdnh thi cLrc ki kh6 dC tini

Ioi giAi bao giirn h6t mqi sO le nh6t cat.

Hai 6ng thfr 6p dung hinh hoc dti don giAn

h6a bdi to6n, nhung ti6c thay, bdi torin lai doi

hoi nhfrng ph6p tfnh phirc tap. Di hai 6ng chAp nh6n m6t srr d6nh gi6 chua chfnh x6c,

nhrrng cirng b6 tay khdng bit5t ai c6 luong

brinh lon hon.

Hai 6ng d5 sft dung c6c chuong trinh m6y

tinh dti th0' lai k6t qu6, nhung chi d6n khi b6

qua c6c phuong tiQn ki thuAt ho mdi c6 duoc rn6t cSch nhin rd rdng bdi to6n. Ho dd thdnh

c6ng trong vi6c rn6 hinh h6a lai nhfi'ng phdp

tinh dai sO AC c6 duoc rn6t c6ng thi'c "dgp"

ho'n vd d6 st' d1rng hon. Sau d6 hai 6ng cdn

vi€n d6n Gi6i tfch T6 hcrp, m6t linh vp'c to6n

thuin tiry xu lf tr6n tap hqp sti roi rqc clti giAi

quv6t bdi to5n. Ndnr 1999 hai 6ng rn6i c6ng b6

t.

k6t qud nghidn cilu bAi to6n cl6 ra tt 1979. Kdt

qui v6 " dinh li b6nh pi-za" c6 md ra con

t,

duong gi6i quydt c6c bdi to6n thgc t6 kh6c

kh6ng?.Chua chfc! Chinh ho cfing thla nh$n:

C6 nhi6u khi c6c nhd to6n hgc lao vdo giAi

quy6t nhirng bdi to6n h6c bfra do m6 say v6

dep cta n6, md cfrng khdng bi6t t<6t qui se

dugc 6p dpng vdo vi6c gi.Vi du nhu bdi to6n

"ducrng cong Peano" do nhd to6n hoc V

Giuseppe Peano dC ra,nim 1890, mdi dt5n mQt

the ki sau m6i tim thAy 6p dpng c0a n6 trong

C6u tr0c sinh hoc, Kinh t6 vd Khi tuong.

PHAN THANH QUANG

(stru tim, gi6i thi€u)

(Ngu6n: Courrier Internatiottot s6 ZOt t tZOtO)

Một phần của tài liệu Tạp chí toán học và tuổi trẻ tháng 3 năm 2010 số 393 (Trang 31)

Tải bản đầy đủ (PDF)

(36 trang)