Hướng nghiên cứu tiếp theo

Một phần của tài liệu Nghiên cứu, phát triển một số kỹ thuật học sâu áp dụng cho phân vùng polyp trên ảnh nội soi đại tràng (Trang 117 - 127)

Hướng nghiên cứu tiếp theo của luận án nhằm để phát triển công trình để có thể đưa vào ứng dụng trong thực tiễn như sau:

1 Tiếp tục nghiên cứu các mô hình học sâu cho phân vùng polyp để có thể xây dựng được mô hình có hiệu năng đủ tốt và có chi phí tính toán vừa phải phù hợp với hệ thống phần cứng thực tế khi triển khai ứng dụng

2 Nghiên cứu cải tiến phương pháp xác định siêu tham số tối ưu của hàm mất mát không đối xứng kết hợp để giảm thiểu công sức cho huấn luyện mô hình tìm kiếm siêu tham số tối ưu

3 Nghiên cứu, thử nghiệm các bộ mã hóa khác cho mạng UNet trong mô hình học tự giám sát, từ đó đưa ra bộ mã hóa phù hợp cho độ chính xác phân vùng polyp cao hơn

DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ

[CT1] Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, “Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function,” in 2020 RIVF

International Conference on Computing and Communication Technologies (RIVF), IEEE, pp 1–6, 2020

[CT2] Lê Thị Thu Hồng, Nguyễn Chí Thành, Phạm Thu Hương, Nguyễn Sinh Huy, Nguyễn Văn Đức, Nguyễn Thành Trung, “Tăng cường dữ liệu huấn luyện cho hệ thống học sâu phân vùng polyp trên ảnh nội soi đại tràng”, Tạp chí Nghiên cứu Khoa học và Công nghệ quân sự, số Đặc san Hội thảo Quốc gia FEE, tr 447-454, 10-2020

[CT3] Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, "CRF-EfficientUNet: an improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer,” IEEE Access, vol 9, pp 156987 - 157001, 2021 (SCIE Q1, IF: 3,367)

[CT4] Lê Thị Thu Hồng, Nguyễn Chí Thành, Nguyễn Đức Hạnh, Trịnh Tiến Lương, Phạm Duy Thái, Ngô Văn Quân “Colonoscopy Image

Classification Using Self-Supervised Visual Feature Learning” Section on Computer Science and Control Engineering, Journal of Military science and technology, Sepecial Issue No 5, pp 3-13, 12-2021

[CT5] Le Thi Thu Hong, Nguyen Chi Thanh and Tran Quoc Long, "Self- supervised Visual Feature Learning for Polyp Segmentation in Colonoscopy Images Using Image Reconstruction as Pretext Task" 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), 2021, pp 254-259, doi: 10 1109/NICS54270 2021 9701580

TÀI LIỆU THAM KHẢO Tiếng Anh 1 2 3 4

Afify, H M , Mohammed, K K , & Hassanien, A E (2021) An improved framework for polyp image segmentation based on SegNet architecture International Journal of Imaging Systems and Technology Ali, S , Ghatwary, N , Braden, B , Lamarque, D , Bailey, A , Realdon, S , Cannizzaro, R , Rittscher, J , Daul, C , & East, J (2020) Endoscopy disease detection challenge 2020 ArXiv Preprint ArXiv:2003 03376 Ali, S , Zhou, F , Daul, C , Braden, B , Bailey, A , Realdon, S , East, J , Wagnieres, G , Loschenov, V , Grisan, E , & others (2019) Endoscopy artifact detection (EAD 2019) challenge dataset ArXiv Preprint

ArXiv:1905 03209

Anh-Cang, P , Thuong-Cang, P , & others (2019) Detection and Classification of Brain Hemorrhage Based on Hounsfield Values and

Convolution Neural Network Technique 2019 IEEE-RIVF International Conference on Computing and Communication

Technologies (RIVF), 1–7 5 6 7 8 9

Ba, H N , Thanh, D N , Van, C T , & Viet, S D (2021) Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function 2021 IEEE-RIVF

International Conference on Computing and Communication Technologies (RIVF), 1–6

Badrinarayanan, V , Kendall, A , & Cipolla, R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495

Berman, M , Triki, A R , & Blaschko, M B (2018) The lovász- softmax loss: A tractable surrogate for the optimization of the

intersection-over-union measure in neural networks Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 4413–

4421

Bernal, J , Sánchez, J , & Vilarino, F (2012) Towards automatic polyp detection with a polyp appearance model Pattern Recognition, 45(9), 3166–3182

Bernal, J , Tajkbaksh, N , Sanchez, F J , Matuszewski, B J , Chen, H , Yu, L , Angermann, Q , Romain, O , Rustad, B , Balasingham, I , & others (2017) Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge IEEE Transactions on Medical Imaging, 36(6), 1231–1249

10 Borgli, H , Thambawita, V , Smedsrud, P H , Hicks, S , Jha, D ,

Eskeland, S L , Randel, K R , Pogorelov, K , Lux, M , Nguyen, D T D , & others (2020) HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy Scientific Data, 7(1), 1–14

11 Brandao, P , Mazomenos, E , Ciuti, G , Caliò, R , Bianchi, F ,

Menciassi, A , Dario, P , Koulaouzidis, A , Arezzo, A , & Stoyanov, D (2017) Fully convolutional neural networks for polyp segmentation in colonoscopy Medical Imaging 2017: Computer-Aided Diagnosis,

10134, 101340F

12 Brent H Taylor, M (n d ) Endoscopy/Colonoscopy

https://brenttaylormd com/endoscopy-colonoscopy/

13 Browet, A , Absil, P -A , & van Dooren, P (2011) Community

detection for hierarchical image segmentation International Workshop

on Combinatorial Image Analysis, 358–371

14 Chen, L , Bentley, P , Mori, K , Misawa, K , Fujiwara, M , & Rueckert, D (2019) Self-supervised learning for medical image analysis using image context restoration Medical Image Analysis, 58, 101539 15 Chen, L -C , Papandreou, G , Kokkinos, I , Murphy, K , & Yuille, A L

(2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs IEEE Transactions

on Pattern Analysis and Machine Intelligence, 40(4), 834–848

16 CVC-Colon team (2017, November 15) Building up Intelligent

Systems for Colonoscopy http://www cvc uab es/CVC-

Colon/index php/our-mission/

17 Endoscopy-vision challenge (2014) Sub-challenge Automatic dection

polyp in colonoscopy Videos

18 Fan, D -P , Ji, G -P , Zhou, T , Chen, G , Fu, H , Shen, J , & Shao, L (2020) Pranet: Parallel reverse attention network for polyp

segmentation International Conference on Medical Image Computing

and Computer-Assisted Intervention, 263–273

19 Fang, Y , Chen, C , Yuan, Y , & Tong, K (2019) Selective feature aggregation network with area-boundary constraints for polyp

segmentation International Conference on Medical Image Computing

and Computer-Assisted Intervention, 302–310

20 Ganz, M , Yang, X , & Slabaugh, G (2012) Automatic segmentation of polyps in colonoscopic narrow-band imaging data IEEE Transactions

21 Geetha, K , & Rajan, C (2016) Automatic colorectal polyp detection in colonoscopy video frames Asian Pacific Journal of Cancer Prevention:

APJCP, 17(11), 4869

22 Goodfellow, I , Bengio, Y , & Courville, A (2016) Deep learning MIT press

23 Goodfellow, I , Pouget-Abadie, J , Mirza, M , Xu, B , Warde-Farley, D , Ozair, S , Courville, A , & Bengio, Y (2014) Generative adversarial nets Advances in Neural Information Processing Systems, 27

24 Hashemi, S R , Salehi, S S M , Erdogmus, D , Prabhu, S P , Warfield, S K , & Gholipour, A (2018) Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection IEEE

Access, 7, 1721–1735

25 He, K , Gkioxari, G , Dollár, P , & Girshick, R (2017) Mask r-cnn

Proceedings of the IEEE International Conference on Computer Vision,

2961–2969

26 He, K , Zhang, X , Ren, S , & Sun, J (2016) Deep residual learning for image recognition Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 770–778

27 Hsu, C -M , Hsu, C -C , Hsu, Z -M , Shih, F -Y , Chang, M -L , & Chen, T -H (2021) Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning Sensors, 21(18), 5995 28 Huynh, H T , & Anh, V N N (2019) A deep learning method for lung

segmentation on large size chest X-ray image 2019 IEEE-RIVF

International Conference on Computing and Communication Technologies (RIVF), 1–5

29 Isola, P , Zhu, J -Y , Zhou, T , & Efros, A A (2017) Image-to-image translation with conditional adversarial networks Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 1125–

1134

30 Jha, D , Ali, S , Emanuelsen, K , Hicks, S A , Thambawita, V , Garcia- Ceja, E , Riegler, M A , de Lange, T , Schmidt, P T , Johansen, H D , & others (2021) Kvasir-instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy International

Conference on Multimedia Modeling, 218–229

31 Jha, D , Riegler, M A , Johansen, D , Halvorsen, P , & Johansen, H D (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation 2020 IEEE 33rd International Symposium on

32 Jha, D , Smedsrud, P H , Johansen, D , de Lange, T , Johansen, H D , Halvorsen, P , & Riegler, M A (2021) A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation IEEE Journal of Biomedical and

Health Informatics, 25(6), 2029–2040

33 Jha, D , Smedsrud, P H , Riegler, M A , Halvorsen, P , de Lange, T , Johansen, D , & Johansen, H D (2020) Kvasir-seg: A segmented polyp dataset International Conference on Multimedia Modeling, 451–462 34 Jha, D , Smedsrud, P H , Riegler, M A , Johansen, D , de Lange, T ,

Halvorsen, P , & Johansen, H D (2019a) Resunet++: An advanced architecture for medical image segmentation 2019 IEEE International

Symposium on Multimedia (ISM), 225–2255

35 Jha, D , Smedsrud, P H , Riegler, M A , Johansen, D , de Lange, T , Halvorsen, P , & Johansen, H D (2019b) Resunet++: An advanced architecture for medical image segmentation 2019 IEEE International

Symposium on Multimedia (ISM), 225–2255

36 Jing, L , & Tian, Y (2020) Self-supervised visual feature learning with deep neural networks: A survey IEEE Transactions on Pattern Analysis

and Machine Intelligence

37 Kang, J , & Gwak, J (2019) Ensemble of instance segmentation models for polyp segmentation in colonoscopy images IEEE Access, 7, 26440– 26447

38 Kingma, D P , & Ba, J (2014) Adam: A method for stochastic optimization ArXiv Preprint ArXiv:1412 6980

39 Krähenbühl, P , & Koltun, V (2011) Efficient inference in fully connected crfs with gaussian edge potentials Advances in Neural

Information Processing Systems, 24, 109–117

40 Krizhevsky, A , Sutskever, I , & Hinton, G E (2012) Imagenet classification with deep convolutional neural networks Advances in

Neural Information Processing Systems, 25, 1097–1105

41 LeCun, Y , Haffner, P , Bottou, L , & Bengio, Y (1999) Object recognition with gradient-based learning In Shape, contour and

grouping in computer vision (pp 319–345) Springer

42 Leufkens, A M , van Oijen, M G H , Vleggaar, F P , & Siersema, P D (2012) Factors influencing the miss rate of polyps in a back-to-back colonoscopy study Endoscopy, 44(05), 470–475

43 Long, J , Shelhamer, E , & Darrell, T (2015) Fully convolutional networks for semantic segmentation Proceedings of the IEEE

44 Mahmud, T , Paul, B , & Fattah, S A (2021) PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images Computers in Biology and Medicine, 128, 104119 45 Mesejo, P , Pizarro, D , Abergel, A , Rouquette, O , Beorchia, S ,

Poincloux, L , & Bartoli, A (2016) Computer-aided classification of gastrointestinal lesions in regular colonoscopy IEEE Transactions on

Medical Imaging, 35(9), 2051–2063

46 Milletari, F , Navab, N , & Ahmadi, S -A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation 2016 Fourth International Conference on 3D Vision

(3DV), 565–571

47 Mirza, M , & Osindero, S (2014) Conditional generative adversarial nets ArXiv Preprint ArXiv:1411 1784

48 Misawa, M , Kudo, S , Mori, Y , Cho, T , Kataoka, S , Yamauchi, A , Ogawa, Y , Maeda, Y , Takeda, K , Ichimasa, K , & others (2018) Artificial intelligence-assisted polyp detection for colonoscopy: initial experience Gastroenterology, 154(8), 2027–2029

49 Nguyen, N -Q , & Lee, S -W (2019) Robust boundary segmentation in medical images using a consecutive deep encoder-decoder network

Ieee Access, 7, 33795–33808

50 Nguyen, N -Q , Vo, D M , & Lee, S -W (2020) Contour-aware polyp segmentation in colonoscopy images using detailed upsamling encoder- decoder networks IEEE Access, 8, 99495–99508

51 Nguyen, T H , Prifti, E , Sokolovska, N , & Zucker, J -D (2019) Disease prediction using synthetic image representations of

metagenomic data and convolutional neural networks 2019 IEEE-RIVF

International Conference on Computing and Communication Technologies (RIVF), 1–6

52 Park, S , Lee, M , & Kwak, N (2015) Polyp detection in colonoscopy videos using deeply-learned hierarchical features Seoul National

University

53 Pogorelov, K , Randel, K R , de Lange, T , Eskeland, S L , Griwodz, C , Johansen, D , Spampinato, C , Taschwer, M , Lux, M , Schmidt, P T , & others (2017) Nerthus: A bowel preparation quality video dataset Proceedings of the 8th ACM on Multimedia Systems

Conference, 170–174

54 Pogorelov, K , Randel, K R , Griwodz, C , Eskeland, S L , de Lange, T , Johansen, D , Spampinato, C , Dang-Nguyen, D -T , Lux, M , Schmidt, P T , & others (2017) Kvasir: A multi-class image dataset

for computer aided gastrointestinal disease detection Proceedings of the

8th ACM on Multimedia Systems Conference, 164–169

55 56 57 58 59 60 61 62 63 64

Poudel, S , & Lee, S -W (2021) Deep multi-scale attentional features for medical image segmentation Applied Soft Computing, 109, 107445 Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2019a) Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better?

2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6

Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2019b) Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better?

2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6

Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2021) Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction Medical Image Analysis, 68, 101897

Ronneberger, O , Fischer, P , & Brox, T (2015) U-net: Convolutional networks for biomedical image segmentation International Conference

on Medical Image Computing and Computer-Assisted Intervention,

234–241

Ruder, S (2016) An overview of gradient descent optimization algorithms ArXiv Preprint ArXiv:1609 04747

Safarov, S , & Whangbo, T K (2021) A-DenseUNet: Adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution Sensors, 21(4), 1441

Sánchez-Peralta, L F , Picón, A , Sánchez-Margallo, F M , & Pagador, J B (2020) Unravelling the effect of data augmentation

transformations in polyp segmentation International Journal of

Computer Assisted Radiology and Surgery, 15(12), 1975–1988

Sandler, M , Howard, A , Zhu, M , Zhmoginov, A , & Chen, L -C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520

Shin, Y , Qadir, H A , Aabakken, L , Bergsland, J , & Balasingham, I (2018a) Automatic colon polyp detection using region based deep cnn and post learning approaches IEEE Access, 6, 40950–40962

65 Shin, Y , Qadir, H A , Aabakken, L , Bergsland, J , & Balasingham, I (2018b) Automatic colon polyp detection using region based deep cnn and post learning approaches IEEE Access, 6, 40950–40962

66 Shin, Y , Qadir, H A , & Balasingham, I (2018) Abnormal colon polyp image synthesis using conditional adversarial networks for improved detection performance IEEE Access, 6, 56007–56017

67 Silva, J , Histace, A , Romain, O , Dray, X , & Granado, B (2014)

Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer International Journal of Computer Assisted

Radiology and Surgery, 9(2), 283–293

68 Simonyan, K , & Zisserman, A (2014) Very deep convolutional

networks for large-scale image recognition ArXiv Preprint ArXiv:1409 1556

69 Smedsrud, P H , Thambawita, V , Hicks, S A , Gjestang, H , Nedrejord, O O , Næss, E , Borgli, H , Jha, D , Berstad, T J D , Eskeland, S L , & others (2021) Kvasir-Capsule, a video capsule endoscopy dataset Scientific Data, 8(1), 1–10

70 Sokolova, M , & Lapalme, G (2009) A systematic analysis of

performance measures for classification tasks Information Processing

& Management, 45(4), 427–437

71 Srivastava, N , Hinton, G , Krizhevsky, A , Sutskever, I , &

Salakhutdinov, R (2014) Dropout: a simple way to prevent neural networks from overfitting The Journal of Machine Learning Research,

15(1), 1929–1958

72 Sức khỏe và đời sống (2020) Ứng dụng trí tuệ nhân tạo trong nội soi

tiêu hóa https://suckhoedoisong vn/ung-dung-tri-tue-nhan-tao-trong-

noi-soi-tieu-hoa-169181933 htm

73 Sung, H , Ferlay, J , Siegel, R L , Laversanne, M , Soerjomataram, I , Jemal, A , & Bray, F (2021) Global cancer statistics 2020:

GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA: A Cancer Journal for Clinicians, 71(3), 209–249

74 Syed, A , & Morris, B T (2019) SSeg-LSTM: semantic scene

segmentation for trajectory prediction 2019 IEEE Intelligent Vehicles

Symposium (IV), 2504–2509

75 Szegedy, C , Liu, W , Jia, Y , Sermanet, P , Reed, S , Anguelov, D , Erhan, D , Vanhoucke, V , & Rabinovich, A (2015) Going deeper with convolutions Proceedings of the IEEE Conference on Computer Vision

76 Taha, D , Alzu’bi, A , Abuarqoub, A , Hammoudeh, M , & Elhoseny, M (2021) Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images International Journal of

Fuzzy Systems, 1–13

77 Tajbakhsh, N , Gurudu, S R , & Liang, J (2013) A classification- enhanced vote accumulation scheme for detecting colonic polyps

International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, 53–62

78 Tajbakhsh, N , Gurudu, S R , & Liang, J (2015a) Automated polyp detection in colonoscopy videos using shape and context information

IEEE Transactions on Medical Imaging, 35(2), 630–644

79 Tajbakhsh, N , Gurudu, S R , & Liang, J (2015b) Automated polyp detection in colonoscopy videos using shape and context information

IEEE Transactions on Medical Imaging, 35(2), 630–644

80 Tan, M , & Le, Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks International Conference on Machine

Learning, 6105–6114

81 Thuwarakesh Murallie (2021) Transfer Learning: The Highest

Leverage Deep Learning Skill You Can Learn

https://towardsdatascience com/transfer-learning-in-deep-learning- 641089950f5d

82 Vardan Agarwal (n d ) Complete Architectural Details of all

EfficientNet Models https://towardsdatascience com/complete-

architectural-details-of-all-efficientnet-models-5fd5b736142 83 VinBigData (2020) Shaping the future of medical data analysis

https://vindr ai/

84 Wang, P , Xiao, X , Brown, J R G , Berzin, T M , Tu, M , Xiong, F , Hu, X , Liu, P , Song, Y , Zhang, D , & others (2018) Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy Nature Biomedical Engineering, 2(10), 741–748 85 Wang, Y , Feng, Z , Song, L , Liu, X , & Liu, S (2021)

Multiclassification of endoscopic colonoscopy images based on deep

Một phần của tài liệu Nghiên cứu, phát triển một số kỹ thuật học sâu áp dụng cho phân vùng polyp trên ảnh nội soi đại tràng (Trang 117 - 127)

Tải bản đầy đủ (DOCX)

(127 trang)
w