Hướng nghiên cứu tiếp theo của luận án nhằm để phát triển công trình để có thể đưa vào ứng dụng trong thực tiễn như sau:
1 Tiếp tục nghiên cứu các mô hình học sâu cho phân vùng polyp để có thể xây dựng được mô hình có hiệu năng đủ tốt và có chi phí tính toán vừa phải phù hợp với hệ thống phần cứng thực tế khi triển khai ứng dụng
2 Nghiên cứu cải tiến phương pháp xác định siêu tham số tối ưu của hàm mất mát không đối xứng kết hợp để giảm thiểu công sức cho huấn luyện mô hình tìm kiếm siêu tham số tối ưu
3 Nghiên cứu, thử nghiệm các bộ mã hóa khác cho mạng UNet trong mô hình học tự giám sát, từ đó đưa ra bộ mã hóa phù hợp cho độ chính xác phân vùng polyp cao hơn
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ
[CT1] Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, “Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function,” in 2020 RIVF
International Conference on Computing and Communication Technologies (RIVF), IEEE, pp 1–6, 2020
[CT2] Lê Thị Thu Hồng, Nguyễn Chí Thành, Phạm Thu Hương, Nguyễn Sinh Huy, Nguyễn Văn Đức, Nguyễn Thành Trung, “Tăng cường dữ liệu huấn luyện cho hệ thống học sâu phân vùng polyp trên ảnh nội soi đại tràng”, Tạp chí Nghiên cứu Khoa học và Công nghệ quân sự, số Đặc san Hội thảo Quốc gia FEE, tr 447-454, 10-2020
[CT3] Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, "CRF-EfficientUNet: an improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer,” IEEE Access, vol 9, pp 156987 - 157001, 2021 (SCIE Q1, IF: 3,367)
[CT4] Lê Thị Thu Hồng, Nguyễn Chí Thành, Nguyễn Đức Hạnh, Trịnh Tiến Lương, Phạm Duy Thái, Ngô Văn Quân “Colonoscopy Image
Classification Using Self-Supervised Visual Feature Learning” Section on Computer Science and Control Engineering, Journal of Military science and technology, Sepecial Issue No 5, pp 3-13, 12-2021
[CT5] Le Thi Thu Hong, Nguyen Chi Thanh and Tran Quoc Long, "Self- supervised Visual Feature Learning for Polyp Segmentation in Colonoscopy Images Using Image Reconstruction as Pretext Task" 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), 2021, pp 254-259, doi: 10 1109/NICS54270 2021 9701580
TÀI LIỆU THAM KHẢO Tiếng Anh 1 2 3 4
Afify, H M , Mohammed, K K , & Hassanien, A E (2021) An improved framework for polyp image segmentation based on SegNet architecture International Journal of Imaging Systems and Technology Ali, S , Ghatwary, N , Braden, B , Lamarque, D , Bailey, A , Realdon, S , Cannizzaro, R , Rittscher, J , Daul, C , & East, J (2020) Endoscopy disease detection challenge 2020 ArXiv Preprint ArXiv:2003 03376 Ali, S , Zhou, F , Daul, C , Braden, B , Bailey, A , Realdon, S , East, J , Wagnieres, G , Loschenov, V , Grisan, E , & others (2019) Endoscopy artifact detection (EAD 2019) challenge dataset ArXiv Preprint
ArXiv:1905 03209
Anh-Cang, P , Thuong-Cang, P , & others (2019) Detection and Classification of Brain Hemorrhage Based on Hounsfield Values and
Convolution Neural Network Technique 2019 IEEE-RIVF International Conference on Computing and Communication
Technologies (RIVF), 1–7 5 6 7 8 9
Ba, H N , Thanh, D N , Van, C T , & Viet, S D (2021) Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function 2021 IEEE-RIVF
International Conference on Computing and Communication Technologies (RIVF), 1–6
Badrinarayanan, V , Kendall, A , & Cipolla, R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495
Berman, M , Triki, A R , & Blaschko, M B (2018) The lovász- softmax loss: A tractable surrogate for the optimization of the
intersection-over-union measure in neural networks Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 4413–
4421
Bernal, J , Sánchez, J , & Vilarino, F (2012) Towards automatic polyp detection with a polyp appearance model Pattern Recognition, 45(9), 3166–3182
Bernal, J , Tajkbaksh, N , Sanchez, F J , Matuszewski, B J , Chen, H , Yu, L , Angermann, Q , Romain, O , Rustad, B , Balasingham, I , & others (2017) Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge IEEE Transactions on Medical Imaging, 36(6), 1231–1249
10 Borgli, H , Thambawita, V , Smedsrud, P H , Hicks, S , Jha, D ,
Eskeland, S L , Randel, K R , Pogorelov, K , Lux, M , Nguyen, D T D , & others (2020) HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy Scientific Data, 7(1), 1–14
11 Brandao, P , Mazomenos, E , Ciuti, G , Caliò, R , Bianchi, F ,
Menciassi, A , Dario, P , Koulaouzidis, A , Arezzo, A , & Stoyanov, D (2017) Fully convolutional neural networks for polyp segmentation in colonoscopy Medical Imaging 2017: Computer-Aided Diagnosis,
10134, 101340F
12 Brent H Taylor, M (n d ) Endoscopy/Colonoscopy
https://brenttaylormd com/endoscopy-colonoscopy/
13 Browet, A , Absil, P -A , & van Dooren, P (2011) Community
detection for hierarchical image segmentation International Workshop
on Combinatorial Image Analysis, 358–371
14 Chen, L , Bentley, P , Mori, K , Misawa, K , Fujiwara, M , & Rueckert, D (2019) Self-supervised learning for medical image analysis using image context restoration Medical Image Analysis, 58, 101539 15 Chen, L -C , Papandreou, G , Kokkinos, I , Murphy, K , & Yuille, A L
(2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4), 834–848
16 CVC-Colon team (2017, November 15) Building up Intelligent
Systems for Colonoscopy http://www cvc uab es/CVC-
Colon/index php/our-mission/
17 Endoscopy-vision challenge (2014) Sub-challenge Automatic dection
polyp in colonoscopy Videos
18 Fan, D -P , Ji, G -P , Zhou, T , Chen, G , Fu, H , Shen, J , & Shao, L (2020) Pranet: Parallel reverse attention network for polyp
segmentation International Conference on Medical Image Computing
and Computer-Assisted Intervention, 263–273
19 Fang, Y , Chen, C , Yuan, Y , & Tong, K (2019) Selective feature aggregation network with area-boundary constraints for polyp
segmentation International Conference on Medical Image Computing
and Computer-Assisted Intervention, 302–310
20 Ganz, M , Yang, X , & Slabaugh, G (2012) Automatic segmentation of polyps in colonoscopic narrow-band imaging data IEEE Transactions
21 Geetha, K , & Rajan, C (2016) Automatic colorectal polyp detection in colonoscopy video frames Asian Pacific Journal of Cancer Prevention:
APJCP, 17(11), 4869
22 Goodfellow, I , Bengio, Y , & Courville, A (2016) Deep learning MIT press
23 Goodfellow, I , Pouget-Abadie, J , Mirza, M , Xu, B , Warde-Farley, D , Ozair, S , Courville, A , & Bengio, Y (2014) Generative adversarial nets Advances in Neural Information Processing Systems, 27
24 Hashemi, S R , Salehi, S S M , Erdogmus, D , Prabhu, S P , Warfield, S K , & Gholipour, A (2018) Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection IEEE
Access, 7, 1721–1735
25 He, K , Gkioxari, G , Dollár, P , & Girshick, R (2017) Mask r-cnn
Proceedings of the IEEE International Conference on Computer Vision,
2961–2969
26 He, K , Zhang, X , Ren, S , & Sun, J (2016) Deep residual learning for image recognition Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 770–778
27 Hsu, C -M , Hsu, C -C , Hsu, Z -M , Shih, F -Y , Chang, M -L , & Chen, T -H (2021) Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning Sensors, 21(18), 5995 28 Huynh, H T , & Anh, V N N (2019) A deep learning method for lung
segmentation on large size chest X-ray image 2019 IEEE-RIVF
International Conference on Computing and Communication Technologies (RIVF), 1–5
29 Isola, P , Zhu, J -Y , Zhou, T , & Efros, A A (2017) Image-to-image translation with conditional adversarial networks Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1125–
1134
30 Jha, D , Ali, S , Emanuelsen, K , Hicks, S A , Thambawita, V , Garcia- Ceja, E , Riegler, M A , de Lange, T , Schmidt, P T , Johansen, H D , & others (2021) Kvasir-instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy International
Conference on Multimedia Modeling, 218–229
31 Jha, D , Riegler, M A , Johansen, D , Halvorsen, P , & Johansen, H D (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation 2020 IEEE 33rd International Symposium on
32 Jha, D , Smedsrud, P H , Johansen, D , de Lange, T , Johansen, H D , Halvorsen, P , & Riegler, M A (2021) A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation IEEE Journal of Biomedical and
Health Informatics, 25(6), 2029–2040
33 Jha, D , Smedsrud, P H , Riegler, M A , Halvorsen, P , de Lange, T , Johansen, D , & Johansen, H D (2020) Kvasir-seg: A segmented polyp dataset International Conference on Multimedia Modeling, 451–462 34 Jha, D , Smedsrud, P H , Riegler, M A , Johansen, D , de Lange, T ,
Halvorsen, P , & Johansen, H D (2019a) Resunet++: An advanced architecture for medical image segmentation 2019 IEEE International
Symposium on Multimedia (ISM), 225–2255
35 Jha, D , Smedsrud, P H , Riegler, M A , Johansen, D , de Lange, T , Halvorsen, P , & Johansen, H D (2019b) Resunet++: An advanced architecture for medical image segmentation 2019 IEEE International
Symposium on Multimedia (ISM), 225–2255
36 Jing, L , & Tian, Y (2020) Self-supervised visual feature learning with deep neural networks: A survey IEEE Transactions on Pattern Analysis
and Machine Intelligence
37 Kang, J , & Gwak, J (2019) Ensemble of instance segmentation models for polyp segmentation in colonoscopy images IEEE Access, 7, 26440– 26447
38 Kingma, D P , & Ba, J (2014) Adam: A method for stochastic optimization ArXiv Preprint ArXiv:1412 6980
39 Krähenbühl, P , & Koltun, V (2011) Efficient inference in fully connected crfs with gaussian edge potentials Advances in Neural
Information Processing Systems, 24, 109–117
40 Krizhevsky, A , Sutskever, I , & Hinton, G E (2012) Imagenet classification with deep convolutional neural networks Advances in
Neural Information Processing Systems, 25, 1097–1105
41 LeCun, Y , Haffner, P , Bottou, L , & Bengio, Y (1999) Object recognition with gradient-based learning In Shape, contour and
grouping in computer vision (pp 319–345) Springer
42 Leufkens, A M , van Oijen, M G H , Vleggaar, F P , & Siersema, P D (2012) Factors influencing the miss rate of polyps in a back-to-back colonoscopy study Endoscopy, 44(05), 470–475
43 Long, J , Shelhamer, E , & Darrell, T (2015) Fully convolutional networks for semantic segmentation Proceedings of the IEEE
44 Mahmud, T , Paul, B , & Fattah, S A (2021) PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images Computers in Biology and Medicine, 128, 104119 45 Mesejo, P , Pizarro, D , Abergel, A , Rouquette, O , Beorchia, S ,
Poincloux, L , & Bartoli, A (2016) Computer-aided classification of gastrointestinal lesions in regular colonoscopy IEEE Transactions on
Medical Imaging, 35(9), 2051–2063
46 Milletari, F , Navab, N , & Ahmadi, S -A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation 2016 Fourth International Conference on 3D Vision
(3DV), 565–571
47 Mirza, M , & Osindero, S (2014) Conditional generative adversarial nets ArXiv Preprint ArXiv:1411 1784
48 Misawa, M , Kudo, S , Mori, Y , Cho, T , Kataoka, S , Yamauchi, A , Ogawa, Y , Maeda, Y , Takeda, K , Ichimasa, K , & others (2018) Artificial intelligence-assisted polyp detection for colonoscopy: initial experience Gastroenterology, 154(8), 2027–2029
49 Nguyen, N -Q , & Lee, S -W (2019) Robust boundary segmentation in medical images using a consecutive deep encoder-decoder network
Ieee Access, 7, 33795–33808
50 Nguyen, N -Q , Vo, D M , & Lee, S -W (2020) Contour-aware polyp segmentation in colonoscopy images using detailed upsamling encoder- decoder networks IEEE Access, 8, 99495–99508
51 Nguyen, T H , Prifti, E , Sokolovska, N , & Zucker, J -D (2019) Disease prediction using synthetic image representations of
metagenomic data and convolutional neural networks 2019 IEEE-RIVF
International Conference on Computing and Communication Technologies (RIVF), 1–6
52 Park, S , Lee, M , & Kwak, N (2015) Polyp detection in colonoscopy videos using deeply-learned hierarchical features Seoul National
University
53 Pogorelov, K , Randel, K R , de Lange, T , Eskeland, S L , Griwodz, C , Johansen, D , Spampinato, C , Taschwer, M , Lux, M , Schmidt, P T , & others (2017) Nerthus: A bowel preparation quality video dataset Proceedings of the 8th ACM on Multimedia Systems
Conference, 170–174
54 Pogorelov, K , Randel, K R , Griwodz, C , Eskeland, S L , de Lange, T , Johansen, D , Spampinato, C , Dang-Nguyen, D -T , Lux, M , Schmidt, P T , & others (2017) Kvasir: A multi-class image dataset
for computer aided gastrointestinal disease detection Proceedings of the
8th ACM on Multimedia Systems Conference, 164–169
55 56 57 58 59 60 61 62 63 64
Poudel, S , & Lee, S -W (2021) Deep multi-scale attentional features for medical image segmentation Applied Soft Computing, 109, 107445 Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2019a) Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better?
2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6
Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2019b) Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better?
2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6
Qadir, H A , Shin, Y , Solhusvik, J , Bergsland, J , Aabakken, L , & Balasingham, I (2021) Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction Medical Image Analysis, 68, 101897
Ronneberger, O , Fischer, P , & Brox, T (2015) U-net: Convolutional networks for biomedical image segmentation International Conference
on Medical Image Computing and Computer-Assisted Intervention,
234–241
Ruder, S (2016) An overview of gradient descent optimization algorithms ArXiv Preprint ArXiv:1609 04747
Safarov, S , & Whangbo, T K (2021) A-DenseUNet: Adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution Sensors, 21(4), 1441
Sánchez-Peralta, L F , Picón, A , Sánchez-Margallo, F M , & Pagador, J B (2020) Unravelling the effect of data augmentation
transformations in polyp segmentation International Journal of
Computer Assisted Radiology and Surgery, 15(12), 1975–1988
Sandler, M , Howard, A , Zhu, M , Zhmoginov, A , & Chen, L -C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520
Shin, Y , Qadir, H A , Aabakken, L , Bergsland, J , & Balasingham, I (2018a) Automatic colon polyp detection using region based deep cnn and post learning approaches IEEE Access, 6, 40950–40962
65 Shin, Y , Qadir, H A , Aabakken, L , Bergsland, J , & Balasingham, I (2018b) Automatic colon polyp detection using region based deep cnn and post learning approaches IEEE Access, 6, 40950–40962
66 Shin, Y , Qadir, H A , & Balasingham, I (2018) Abnormal colon polyp image synthesis using conditional adversarial networks for improved detection performance IEEE Access, 6, 56007–56017
67 Silva, J , Histace, A , Romain, O , Dray, X , & Granado, B (2014)
Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer International Journal of Computer Assisted
Radiology and Surgery, 9(2), 283–293
68 Simonyan, K , & Zisserman, A (2014) Very deep convolutional
networks for large-scale image recognition ArXiv Preprint ArXiv:1409 1556
69 Smedsrud, P H , Thambawita, V , Hicks, S A , Gjestang, H , Nedrejord, O O , Næss, E , Borgli, H , Jha, D , Berstad, T J D , Eskeland, S L , & others (2021) Kvasir-Capsule, a video capsule endoscopy dataset Scientific Data, 8(1), 1–10
70 Sokolova, M , & Lapalme, G (2009) A systematic analysis of
performance measures for classification tasks Information Processing
& Management, 45(4), 427–437
71 Srivastava, N , Hinton, G , Krizhevsky, A , Sutskever, I , &
Salakhutdinov, R (2014) Dropout: a simple way to prevent neural networks from overfitting The Journal of Machine Learning Research,
15(1), 1929–1958
72 Sức khỏe và đời sống (2020) Ứng dụng trí tuệ nhân tạo trong nội soi
tiêu hóa https://suckhoedoisong vn/ung-dung-tri-tue-nhan-tao-trong-
noi-soi-tieu-hoa-169181933 htm
73 Sung, H , Ferlay, J , Siegel, R L , Laversanne, M , Soerjomataram, I , Jemal, A , & Bray, F (2021) Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA: A Cancer Journal for Clinicians, 71(3), 209–249
74 Syed, A , & Morris, B T (2019) SSeg-LSTM: semantic scene
segmentation for trajectory prediction 2019 IEEE Intelligent Vehicles
Symposium (IV), 2504–2509
75 Szegedy, C , Liu, W , Jia, Y , Sermanet, P , Reed, S , Anguelov, D , Erhan, D , Vanhoucke, V , & Rabinovich, A (2015) Going deeper with convolutions Proceedings of the IEEE Conference on Computer Vision
76 Taha, D , Alzu’bi, A , Abuarqoub, A , Hammoudeh, M , & Elhoseny, M (2021) Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images International Journal of
Fuzzy Systems, 1–13
77 Tajbakhsh, N , Gurudu, S R , & Liang, J (2013) A classification- enhanced vote accumulation scheme for detecting colonic polyps
International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, 53–62
78 Tajbakhsh, N , Gurudu, S R , & Liang, J (2015a) Automated polyp detection in colonoscopy videos using shape and context information
IEEE Transactions on Medical Imaging, 35(2), 630–644
79 Tajbakhsh, N , Gurudu, S R , & Liang, J (2015b) Automated polyp detection in colonoscopy videos using shape and context information
IEEE Transactions on Medical Imaging, 35(2), 630–644
80 Tan, M , & Le, Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks International Conference on Machine
Learning, 6105–6114
81 Thuwarakesh Murallie (2021) Transfer Learning: The Highest
Leverage Deep Learning Skill You Can Learn
https://towardsdatascience com/transfer-learning-in-deep-learning- 641089950f5d
82 Vardan Agarwal (n d ) Complete Architectural Details of all
EfficientNet Models https://towardsdatascience com/complete-
architectural-details-of-all-efficientnet-models-5fd5b736142 83 VinBigData (2020) Shaping the future of medical data analysis
https://vindr ai/
84 Wang, P , Xiao, X , Brown, J R G , Berzin, T M , Tu, M , Xiong, F , Hu, X , Liu, P , Song, Y , Zhang, D , & others (2018) Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy Nature Biomedical Engineering, 2(10), 741–748 85 Wang, Y , Feng, Z , Song, L , Liu, X , & Liu, S (2021)
Multiclassification of endoscopic colonoscopy images based on deep