Hướng nghiên cứu tiếp theo

Một phần của tài liệu Nghiên cứu, phát triển một số kỹ thuật học sâu áp dụng cho phân vùng polyp trên ảnh nội soi đại tràng (Trang 136 - 154)

Hướng nghiên cứu tiếp theo của luận án nhằm để phát triển công trình để có thể đưa vào ứng dụng trong thực tiễn như sau:

1. Tiếp tục nghiên cứu các mô hình học sâu cho phân vùng polyp để có thể xây dựng được mô hình có hiệu năng đủ tốt và có chi phí tính toán vừa phải phù hợp với hệ thống phần cứng thực tế khi triển khai ứng dụng.

2. Nghiên cứu cải tiến phương pháp xác định siêu tham số tối ưu của hàm mất mát không đối xứng kết hợp để giảm thiểu công sức cho huấn luyện mô hình tìm kiếm siêu tham số tối ưu.

3. Nghiên cứu, thử nghiệm các bộ mã hóa khác cho mạng UNet trong mô hình học tự giám sát, từ đó đưa ra bộ mã hóa phù hợp cho độ chính xác phân vùng polyp cao hơn.

107

DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ

[CT1]. Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, “Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function,” in 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), IEEE, pp.1–6, 2020.

[CT2]. Lê Thị Thu Hồng, Nguyễn Chí Thành, Phạm Thu Hương, Nguyễn Sinh Huy, Nguyễn Văn Đức, Nguyễn Thành Trung, “Tăng cường dữ liệu huấn luyện cho hệ thống học sâu phân vùng polyp trên ảnh nội soi đại tràng”, Tạp chí Nghiên cứu Khoa học và Công nghệ quân sự, số Đặc san Hội thảo Quốc gia FEE, tr. 447-454, 10-2020.

[CT3]. Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, "CRF- EfficientUNet: an improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer,” IEEE Access, vol. 9, pp. 156987 - 157001, 2021 (SCIE Q1, IF: 3,367).

[CT4]. Lê Thị Thu Hồng, Nguyễn Chí Thành, Nguyễn Đức Hạnh, Trịnh Tiến Lương, Phạm Duy Thái, Ngô Văn Quân “Colonoscopy Image Classification Using Self-Supervised Visual Feature Learning”. Section on Computer Science and Control Engineering, Journal of Military science and technology, Sepecial Issue No.5, pp. 3-13, 12-2021.

[CT5]. Le Thi Thu Hong, Nguyen Chi Thanh and Tran Quoc Long, "Self-supervised Visual Feature Learning for Polyp Segmentation in Colonoscopy Images Using Image Reconstruction as Pretext Task" 2021 8th NAFOSTED Conference on Information and Computer Science (NICS), 2021, pp. 254-259, doi: 10.1109/NICS54270.2021.9701580.

TÀI LIỆU THAM KHẢO Tiếng Anh

1.Afify, H. M., Mohammed, K. K., & Hassanien, A. E. (2021). An improved framework for polyp image segmentation based on SegNet

architecture. International Journal of Imaging Systems and Technology.

2.Ali, S., Ghatwary, N., Braden, B., Lamarque, D., Bailey, A., Realdon,

S., Cannizzaro, R., Rittscher, J., Daul, C., & East, J. (2020). Endoscopy

disease detection challenge 2020. ArXiv Preprint ArXiv:2003.03376.

3.Ali, S., Zhou, F., Daul, C., Braden, B., Bailey, A., Realdon, S., East, J., Wagnieres, G., Loschenov, V., Grisan, E., & others. (2019). Endoscopy artifact detection (EAD 2019) challenge dataset. ArXiv Preprint ArXiv:1905.03209.

4.Anh-Cang, P., Thuong-Cang, P., & others. (2019). Detection and Classification of Brain Hemorrhage Based on Hounsfield Values and Convolution Neural Network Technique. 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), 1–7.

5.Ba, H. N., Thanh, D. N., Van, C. T., & Viet, S. D. (2021). Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function. 2021 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), 1–6.

6.Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.

7.Berman, M., Triki, A. R., & Blaschko, M. B. (2018). The lovász- softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4413– 4421.

8.Bernal, J., Sánchez, J., & Vilarino, F. (2012). Towards automatic polyp detection with a polyp appearance model. Pattern Recognition,

45(9), 3166–3182.

9.Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., Angermann, Q., Romain, O., Rustad, B., Balasingham, I., & others. (2017). Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Transactions on Medical Imaging, 36(6), 1231–1249.

109

10. Borgli, H., Thambawita, V., Smedsrud, P. H., Hicks, S., Jha, D., Eskeland, S. L., Randel, K. R., Pogorelov, K., Lux, M., Nguyen, D. T. D., & others. (2020). HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data, 7(1), 1–14.

11. Brandao, P., Mazomenos, E., Ciuti, G., Caliò, R., Bianchi, F., Menciassi, A., Dario, P., Koulaouzidis, A., Arezzo, A., & Stoyanov, D. (2017). Fully convolutional neural networks for polyp segmentation in colonoscopy. Medical Imaging 2017: Computer-Aided Diagnosis,

10134, 101340F.

12. Brent H.Taylor, M. (n.d.). Endoscopy/Colonoscopy. https://brenttaylormd.com/endoscopy-colonoscopy/

13. Browet, A., Absil, P.-A., & van Dooren, P. (2011). Community detection for hierarchical image segmentation. International Workshop on Combinatorial Image Analysis, 358–371.

14. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., &

Rueckert, D. (2019). Self-supervised learning for medical image analysis

using image context restoration. Medical Image Analysis, 58, 101539.

15. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille,

A. L. (2017). Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected crfs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–

848.

16. CVC-Colon team. (2017, November 15). Building up Intelligent

Systems for Colonoscopy. http://www.cvc.uab.es/CVC- Colon/index.php/our-mission/

17. Endoscopy-vision challenge. (2014). Sub-challenge Automatic dection polyp in colonoscopy Videos.

18. Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., & Shao, L. (2020). Pranet: Parallel reverse attention network for polyp segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 263–273.

19. Fang, Y., Chen, C., Yuan, Y., & Tong, K. (2019). Selective feature aggregation network with area-boundary constraints for polyp segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 302–310.

20. Ganz, M., Yang, X., & Slabaugh, G. (2012). Automatic segmentation of polyps in colonoscopic narrow-band imaging data.

110

21. Geetha, K., & Rajan, C. (2016). Automatic colorectal polyp detection in colonoscopy video frames. Asian Pacific Journal of Cancer Prevention: APJCP, 17(11), 4869.

22. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

23. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative

adversarial nets. Advances in Neural Information Processing Systems, 27.

24. Hashemi, S. R., Salehi, S. S. M., Erdogmus, D., Prabhu, S. P., Warfield, S. K., & Gholipour, A. (2018). Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection.

IEEE Access, 7, 1721–1735.

25. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE International Conference on Computer Vision,2961–2969.

26. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

27. Hsu, C.-M., Hsu, C.-C., Hsu, Z.-M., Shih, F.-Y., Chang, M.-L.,

& Chen, T.-H. (2021). Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning. Sensors,

21(18), 5995.

28. Huynh, H. T., & Anh, V. N. N. (2019). A deep learning method for lung segmentation on large size chest X-ray image. 2019 IEEE- RIVF International Conference on Computing and Communication Technologies (RIVF), 1–5.

29. Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to- image translation with conditional adversarial networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1125– 1134.

30. Jha, D., Ali, S., Emanuelsen, K., Hicks, S. A., Thambawita, V., Garcia-Ceja, E., Riegler, M. A., de Lange, T., Schmidt, P. T., Johansen, H. D., & others. (2021). Kvasir-instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. International Conference on Multimedia Modeling, 218–229.

31. Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., & Johansen, H. D. (2020). Doubleu-net: A deep convolutional neural network for medical image segmentation. 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 558–564.

111

32. Jha, D., Smedsrud, P. H., Johansen, D., de Lange, T., Johansen, H. D., Halvorsen, P., & Riegler, M. A. (2021). A comprehensive study on colorectal polyp segmentation with ResUNet+ +, conditional random field and test-time augmentation. IEEE Journal of Biomedical and Health Informatics, 25(6), 2029–2040.

33. Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., & Johansen, H. D. (2020). Kvasir-seg: A

segmented polyp dataset. International Conference on Multimedia

Modeling, 451–462.

34. Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., de Lange, T., Halvorsen, P., & Johansen, H. D. (2019a). Resunet++: An advanced architecture for medical image segmentation. 2019 IEEE International Symposium on Multimedia (ISM), 225–2255.

35. Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., de Lange, T., Halvorsen, P., & Johansen, H. D. (2019b). Resunet++: An advanced architecture for medical image segmentation. 2019 IEEE International Symposium on Multimedia (ISM), 225–2255.

36. Jing, L., & Tian, Y. (2020). Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

37. Kang, J., & Gwak, J. (2019). Ensemble of instance segmentation models for polyp segmentation in colonoscopy images.

IEEE Access, 7, 26440– 26447.

38. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980.

39. Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials. Advances in Neural Information Processing Systems, 24, 109–117.

40. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.

Advances in Neural Information Processing Systems, 25, 1097–1105.

41. LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, contour and grouping in computer vision (pp. 319–345). Springer.

42. Leufkens, A. M., van Oijen, M. G. H., Vleggaar, F. P., & Siersema, P. D. (2012). Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy, 44(05), 470–475.

43. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431– 3440.

112

44. Mahmud, T., Paul, B., & Fattah, S. A. (2021). PolypSegNet: A

modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Computers in Biology and Medicine, 128, 104119.

45. Mesejo, P., Pizarro, D., Abergel, A., Rouquette, O., Beorchia, S., Poincloux, L., & Bartoli, A. (2016). Computer-aided classification of gastrointestinal lesions in regular colonoscopy. IEEE Transactions on Medical Imaging, 35(9), 2051–2063.

46. Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), 565–571.

47. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. ArXiv Preprint ArXiv:1411.1784.

48. Misawa, M., Kudo, S., Mori, Y., Cho, T., Kataoka, S., Yamauchi, A., Ogawa, Y., Maeda, Y., Takeda, K., Ichimasa, K., & others. (2018). Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology, 154(8), 2027–2029.

49. Nguyen, N.-Q., & Lee, S.-W. (2019). Robust boundary segmentation in medical images using a consecutive deep encoder- decoder network. Ieee Access, 7, 33795–33808.

50. Nguyen, N.-Q., Vo, D. M., & Lee, S.-W. (2020). Contour- aware polyp segmentation in colonoscopy images using detailed upsamling encoder-decoder networks. IEEE Access, 8, 99495–99508.

51. Nguyen, T. H., Prifti, E., Sokolovska, N., & Zucker, J.-D. (2019). Disease prediction using synthetic image representations of metagenomic data and convolutional neural networks. 2019 IEEE- RIVF International Conference on Computing and Communication Technologies (RIVF), 1–6.

52. Park, S., Lee, M., & Kwak, N. (2015). Polyp detection in colonoscopy videos using deeply-learned hierarchical features. Seoul National University.

53. Pogorelov, K., Randel, K. R., de Lange, T., Eskeland, S. L., Griwodz, C., Johansen, D., Spampinato, C., Taschwer, M., Lux, M., Schmidt, P. T., & others. (2017). Nerthus: A bowel preparation quality video dataset. Proceedings of the 8th ACM on Multimedia Systems Conference, 170–174.

54. Pogorelov, K., Randel, K. R., Griwodz, C., Eskeland, S. L., de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.-T., Lux, M., Schmidt, P. T., & others. (2017). Kvasir: A multi-class image dataset

113

for computer aided gastrointestinal disease detection. Proceedings of the 8th ACM on Multimedia Systems Conference, 164–169.

55. Poudel, S., & Lee, S.-W. (2021). Deep multi-scale attentional

features for medical image segmentation. Applied Soft Computing, 109,

107445.

56. Qadir, H. A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., & Balasingham, I. (2019a). Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better? 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6.

57. Qadir, H. A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., & Balasingham, I. (2019b). Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better? 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1–6.

58. Qadir, H. A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., & Balasingham, I. (2021). Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction. Medical Image Analysis, 68, 101897.

59. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation.

International Conference on Medical Image Computing and Computer-Assisted Intervention,234–241.

60. Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv Preprint ArXiv:1609.04747.

61. Safarov, S., & Whangbo, T. K. (2021). A-DenseUNet: Adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution. Sensors, 21(4), 1441.

62. Sánchez-Peralta, L. F., Picón, A., Sánchez-Margallo, F. M., & Pagador, J. B. (2020). Unravelling the effect of data augmentation transformations in polyp segmentation. International Journal of Computer Assisted Radiology and Surgery, 15(12), 1975–1988.

63. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.

64. Shin, Y., Qadir, H. A., Aabakken, L., Bergsland, J., & Balasingham, I. (2018a). Automatic colon polyp detection using region based deep cnn and post learning approaches. IEEE Access, 6, 40950– 40962.

114

65. Shin, Y., Qadir, H. A., Aabakken, L., Bergsland, J., & Balasingham, I. (2018b). Automatic colon polyp detection using region based deep cnn and post learning approaches. IEEE Access, 6, 40950– 40962.

66. Shin, Y., Qadir, H. A., & Balasingham, I. (2018). Abnormal colon polyp image synthesis using conditional adversarial networks for improved detection performance. IEEE Access, 6, 56007–56017.

67. Silva, J., Histace, A., Romain, O., Dray, X., & Granado, B. (2014). Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, 9(2), 283–293.

68. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ArXiv Preprint ArXiv:1409.1556.

69. Smedsrud, P. H., Thambawita, V., Hicks, S. A., Gjestang, H., Nedrejord, O. O., Næss, E., Borgli, H., Jha, D., Berstad, T. J. D., Eskeland, S. L., & others. (2021). Kvasir-Capsule, a video capsule endoscopy dataset. Scientific Data, 8(1), 1–10.

70. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437.

71. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,

15(1), 1929–1958.

72. Sức khỏe và đời sống. (2020). Ứng dụng trí tuệ nhân tạo trong nội soi tiêu hóa. https://suckhoedoisong.vn/ung-dung-tri-tue- nhan-tao-trong-noi-soi-tieu-hoa-169181933.htm

73. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

74. Syed, A., & Morris, B. T. (2019). SSeg-LSTM: semantic scene segmentation for trajectory prediction. 2019 IEEE Intelligent Vehicles Symposium (IV), 2504–2509.

75. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9.

115

76. Taha, D., Alzu’bi, A., Abuarqoub, A., Hammoudeh, M., & Elhoseny,

M. (2021). Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images. International Journal of Fuzzy Systems, 1–13.

77. Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2013). A classification-enhanced vote accumulation scheme for detecting colonic polyps. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, 53–62.

78. Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2015a). Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 35(2), 630–644.

79. Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2015b). Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 35(2), 630–644.

80. Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105–6114.

81. Thuwarakesh Murallie. (2021). Transfer Learning: The Highest

Leverage Deep Learning Skill You Can Learn.

https://towardsdatascience.com/transfer-learning-in-deep-learning- 641089950f5d

82. Vardan Agarwal. (n.d.). Complete Architectural Details of

Một phần của tài liệu Nghiên cứu, phát triển một số kỹ thuật học sâu áp dụng cho phân vùng polyp trên ảnh nội soi đại tràng (Trang 136 - 154)

Tải bản đầy đủ (DOCX)

(154 trang)
w