Đăng nhập hệ thống

Một phần của tài liệu 28032_1712202001913700NGUYENDANGKHOA.compressed (Trang 67)

6. Ý nghĩa khoa học và thực ti ễn ca đề tài

3.3.1. Đăng nhập hệ thống

Ta dùng phần WinSCP để kết nối đến cụm máy tính song song c a ccs1.hune.edu.vn với tài khoản có sẵn.

Sau khi login vào hệ thống ccs1 ta được như hình

Hình 3.10. Giao diện khi đã kết ni 3.3.2.Cách chạy chương trình trên hệ thng ccs1

Dịch chương trình Dijstra và Prim bằng lệnh mpic++dijkstra.cpp-o dijkstra Khi này chương trình thực hiện có tên dijkstra (không có phần đuôi) được tạo ra.

Tạo file dijkstra.script có nội dung #!/bin/sh

/usr/local/bin/mpiexec /home/son/laund1/dijkstra Thực hiện chạy song song

Submit file PBS script thông qua lệnh qsub như sau: qsub q 11 -1 nodes= 2:ppn= 4 dijkstra.script Di50.txt

Hệ thống sẽ tạo ra kết quảđầu ra trong file dijkstra.script.o16619 Tất cả các lệnh được thực hiện thông qua phần mềm PuTTY

Hình 3.11. Giao din phn mm PuTTY

Sau khi login ta được giao diện như sau

Hình 3.12. Giao diện để gõ lnh ca h thng

Có 2 cách thực hiện chương trình: chạy tương tác trên nền hệ điều hành (ví dụ

./hello) hoặc thông qua Bộ quản lý chương trình PBS Torque (qsub mpi_hello.script).

Nếu chương trình c a bạn nhỏ (yêu cầu 1 bộ xử lý, chạy trong th i gian ngắn, và yêu cầu ít bộ nhớ) thì có thể chạy trực tiếp trên hệ điểu hành như ví dụ hello trên. Nếu chương trình lớn, đòi hỏi nhiều bộ xử lý, th i gian thực hiện lâu thì phải thực hiện

thông quả Bộ quản lý chương trình PBS Torque

Tất cả các chương trình chạy trên Trung tâm Khoa học tính toán đều nên chạy thông qua PBS Torque (chú ý rằng tất cả chương trình, kể cả chương trình chạy trên 01 bộ xử lý đều có thể thực hiện thông qua PBS) để các tài nguyên c a Trung tâm được khai thác hiệu quảvà để PBS Torque phục vụ các chương trình c a tất cả ngư i sử dụng một cách tối ưu.

3.3.3.Kết quthu được

Dưới đây là kết quả bài toán Dijkstra với 02 BXL P0 và P1 với th i gian chạy là 0.002539 sescond Bộ xử lý chính (P0) ghi nhớ các đỉnh đểtìm đư ng đi Bộ xử lý phụ (P1)ghi nhớ các đỉnh đểtìm đư ng đi Bộ xử lý chính (P0) tìm chiều dài từ đỉnh 1 đến các đỉnh 1, 2, 3, 4, 5, 6 Bộ xử lý phụ (P1)tìm chiều dài từđỉnh 1 đến các đỉnh 7, 8, 9, 10, 11, 12

3.3.4.Đánh giá thuật toán

Trong thuật toán song song ngư i ta sử dụng tốc độ (Speedup) để đánh giá th i gian thực hiện c a thuật toán song song so với thuật toán tuần tự.

Dữ liệu đầu vào là đồ thị được tạo ngẫu nhiên có đuôi .txt

Hình 3.14. File đầu vào bài toán Dijkstra với 50 đỉnh

Trong đó Speedup (tốc độ)= Ts/ Tp

Ts: Sequential time (Th i gian chạy tuần tự) Tp: Parallel time (Th i gian chạy song song) Bảng đánh giá trên được biểu diễn bằng đồ thị sau:

Bài toán Dijkstra

Chúng tôi tạo đồ thị gồm 1200 đỉnh và cho thực hiện trên 1 bộ xử lý (tuần tự), 2, 4, 6, 8 bộ xử lý thì kết quảđược cho bảng sau:

Bng 3.1. Bảng đánh giá thời gian thc hin thut toán song song so vi thut toán tun tbài toán Dijkstra 1200 đỉnh

S b x lý 2 4 6 8

T căđ

Hình 3.15. Đồ th biu din sđánh giá thuật toán song song so vi tun t bài toán

Dijkstra 1200 đỉnh

Chúng tôi tiếp tục tạo thêm đồ thị gồm 2500 đỉnh và cho thực hiện trên 1 bộ xử lý (tuần tự), 2, 4, 6, 8 bộ xử lý thì kết quảđược cho bảng sau:

Bng 3.2. Bảng đánh giá thi gian thc hin thut toán song song so vi thut toán tun tbài toán Dijkstra 2500 đỉnh

S b x lý 2 4 6 8

T căđ (Speedup) 1.5 1.78 1.99 2.09

Hình 3.16. Đồ th biu din sđánh giá thuật toán song song so vi tun t bài toán

Dijkstra 2500 đỉnh 1.42 1.68 1.8 2.01 0 0.5 1 1.5 2 2.5 2 4 6 8 Sp ee du p tố đ ộ Dijkstra

Num er of pro essors số ộ xử lý

Num er of pro essors số ộ xử lý

1.5 1.78 1.99 2.09 0 0.5 1 1.5 2 2.5 2 4 6 8 Sp ee du p tố đ Dijkstra

Num er of pro essors số ộ xử lý

Bài toán Prim

Chúng tôi tiếp tục tạo thêm đồ thị gồm 2100 đỉnh và cho thực hiện trên 1 bộ xử lý (tuần tự), 2, 4, 6, 8 bộ xử lý thì kết quảđược cho bảng sau:

Bng 3.3. Bảng đánh thi gian thc hin thut toán song song so vi thut toán tun tbài toán Prim 2100 đỉnh

S b x lý 2 4 6 8

T căđ

(Speedup) 1.45 1.73 1.91 2.05

Hình 3.17. Đồ th biu din sđánh giá thuật toán song song so vi tun t bài toán

Prim 2100 đỉnh

Nh n xét: từ đồ thị và bảng kết quả trên, chúng ta nhận thấy rằng tốc độ xử lý được tăng lên đáng kể khi xử lý trên 2 bộ xử lý thì th i gian giảm hơn 1,6 lần so với xử lý tuần tự. 1.45 1.73 1.91 2.05 0 0.5 1 1.5 2 2.5 2 4 6 8 Sp ee du p tố đ Prim

Num er of pro essors số ộ xử lý

K T LU N VĨăH NG PHÁT TRI N

K T LU N

Luận văn đã nghiên c u tổng quát về thuật toán song song và áp dụng cho một số bài toán về đồ thị. Luận văn cũng đã khái quát các khái niệm về thuật toán song song và các vấn đề liên quan đến thuật toán song song, các mô hình song song, môi trư ng lập trình song song, lý thuyết đồ thị, cách biểu diễn đồ thị trên máy tính, các vấn đề vềđư ng đi, cây bao trùm trên bảng đồ.

Từ các hiểu biết trên luận văn đã nghiên c u để song song hóa các thuật toán tìm đư ng đi ngắn nhất (Dijkstra) và cây khung nhỏ nhất (Prim) từ các thuật toán tuần tự truyền thống.

Ngoài ra do còn thiếu kinh nghiệm trong việc phân tích, thiết kế nên kết quảđạt được còn hạn chế.

Qua nghiên c u đềtài này cũng đã nắm được các kiến th c về xử lý song song, lập trình song song, lý thuyết đồ thị. Tìm hiểu được cách ng dụng thuật toán song song và đã áp dụng vào một số bài toán cụ thể.

H NG PHÁT TRI N

Sau khi hoàn thành đề tài tôi sẽ tiếp tục nghiên c u thêm để phát triển đề tài này, cải tiến thêm các thuật toán và áp dụng vào các lĩnh vực như:

⁻ Áp dụng song song hóa các thuật toán Dijkstra, Prim theo mô hình máy tính phân cụm.

⁻ Nghiên c u mô hình lập trình song song và áp dụng chuyển các thuật toán tuần tự khác vềđồ thị sang thuật toán song song.

DANH M C TÀI LI U THAM KH O

Tài li u Ti ng Vi t

[1] PGS.TS Đoàn Văn Ban, TS. Nguyễn Mậu Hân, X lý song song & phân tán, Viện Công nghệ Thông tin, 2006.

[2] PGS.TSKH Trần Quốc Chiến, Hồ Xuân Bình, Thut toán song song tìm lung cc

đại, Tạp chí Khoa học & Công nghệ, Đại học Đà Nẵng, 5(22)/2007, 37-42

[3] PGS.TSKH Trần Quốc Chiến, Giáo trình Lý thuyết đồ th, Đại học Đà Nẵng 2007.

[4] PGS.TSKH Trần Quốc Chiến, Trần Thị Mỹ Dung, ng dng thut toán tìm

đường đi ngắn nhất Đa nguồn đích tìm luồng cực đại đa hàng hóa đồng thời”, kỷ yếu hội thảo khoa học Công nghệThông tin, Đại học Sư Phạm Đà Nẳng, 11-2011.

[5] Nguyễn Đ c Nghĩa, Nguyễn Tô Thành, “ Toán ri rc , Nhà Xuất Bản Đại học quốc gia Hà Nội, 2006

[6] PGS.TS Lê Huy Thập, “ Cơ sở lý thuyết song Song , Nhà Xuất Bản Thông Tin và Truyền Thông, 2011

[7] Nguyễn Đ c Nghĩa, “ Cu trúc d liu và gii thut “, Nhà Xuất Bản KHKT Hà Nội, 2013

Tài li u Ti ng Anh

[1] Tom Wilson, Nicholas Hofbauer, Dijkstra’s Algorithm in Parallel, team report 2008.

[2] A. Grama, A.Gupta, G.Karypis, V.Kumar, “Introduction to Parallel Computing”, 2003

[3] Seyed H. Roosta, Parallel Processing and Parallel Algorithms, Theory and Computation, Springer 1999.

[4] Joseph JáJá, An Introduction to Parallel Algrithms, Addison - Wesley, 1992

[5] Thomas Rauber, Gudula Runger (2013), Parallel Programming: for Multicore and Cluster Systems, Springer.

[6] JimKeogh(2004),Java Dymistyfied, Chapter 12 Multithreading.

[7] William Gropp et al, MPICH2 User’s Guide Version 1.0.6, Mathematics and ComputerScience Division, Argonne National Laboratory, 2007

Một phần của tài liệu 28032_1712202001913700NGUYENDANGKHOA.compressed (Trang 67)

Tải bản đầy đủ (PDF)

(85 trang)