Kết quả thực nghiệm của mô hình FTS-1NT trên tập dữ liệu tuyển sinh

Một phần của tài liệu Một số phương pháp nâng cao độ chính xác dự báo trong mô hình chuỗi thời gian mờ (Trang 84 - 88)

So sánh đánh giá dựa trên quan hệ mờ bậc 1 (QHM bậc 1)

Để đánh giá hiệu quả của mô hình đề xuất FTS-1NT dựa trên QHM bậc 1 với

số khoảng chia bằng 7, kết quả dự báo thu được trong Bảng 2.6 tại Mục 2.2.1 được đưa ra so sánh với các mô hình có tên như: Song & Chissom [8], Chen [10], Cheng và công sự [55], Sullivan và công sự [83] và Lee và cộng sự [47]. Cũng giống như mô hình được xuất, các mô hình so sánh này được xây dựng bằng cách sử dụng quan hệ mờ và chưa kết hợp với bất kỳ một kỹ thuật nào khác trong việc nâng cao hiệu quả dự báo. Kết quả so sánh về sai số dự báo MSE (1.18) giữa mô hình FTS- 1NT và các mô hình so sánh được liệt kê trong Bảng 2.19.

Bảng 2.19: So sánh sai số dự báo MSE giữa mô hình FTS-1NT với các mô hình khác trên cùng 7 khoảng.

hình

MSE

Từ Bảng 2.19 nhận thấy rằng, mô hình dự báo FTS-1NT đưa ra sai số dự báo nhỏ hơn các mô hình so sánh. Đặc biệt khi so sánh với hai mô hình nền tảng [8, 10] được sử dụng rộng rãi nhất cho đến nay, thì mô hình đề xuất FTS-1NT cho kết quả dự báo vượt trội hơn.

Hơn nữa, mô hình FTS-1NT cũng được so sánh với các mô hình trong các công

trình [11, 20, 21, 26] với số khoảng bằng 14. Kết quả và sai số dự báo được biểu diễn trong Bảng 2.20. Trong đó, cột thứ 2 thể hiện dữ liệu thực tế tương ứng với từng

năm, các cột còn lại là kết quả dự báo của các mô hình được lựa chọn để so sánh trong giai đoạn huấn luyện.

Bảng 2.20: Kết quả và sai số dự báo giữa mô hình FTS-1NT với các mô hình khác trên cùng 14 khoảng Năm DL thực 1971 1972 1973 --- 1991 1992 MSE

Quan sát các kết quả dự báo trong Bảng 2.20 cho thấy, mô hình FTS-1NT

đưa ra các giá trị dự báo sát với dữ liệu thực hơn so với các mô hình so sánh. Đánh giá về sai số dự báo, thấy rằng mô hình FTS-1NT có giá trị MSE = 75076.7 nhỏ nhất trong số các mô hình so sánh dựa trên QHM bậc 1 với số khoảng chia bằng 14.

Tất cả các mô hình so sánh ở các Bảng 2.19 và Bảng 2.20 trên đều sử dụng quan hệ mờ để thiết lập các mô hình riêng của chúng. Tuy nhiên để có được kết quả và sai số

dự báo tốt hơn so với các mô hình so sánh ở trên, mô hình đề xuất FTS-1NT đã sử

dụng khái niệm về NQHM-PTTG và quy tắc giải mờ có trọng để thiết lập mô hình.

Việc thiết lập NQHM-PTTG trong mô hình dự báo khiến số lượng luật và các thông tin tham gia dự báo được đầy đủ hơn. Đặc biệt, xem xét đến thứ tự xuất hiện của các tập mờ trong nhóm quan hệ mờ và phản ánh đúng tính thực tiễn hơn. Trong khi, Song & Chissom [8] sử dụng các phép toán max -min phức tạp để tính toán đầu ra dự báo, các mô hình còn lại sử dụng nhóm quan hệ mờ của Chen [10] để thiết lập và tính toán đầu ra dự báo. Các mô hình sử dụng nhóm quan hệ mờ của Chen do không xét đến các quan hệ lặp lại nên bị thiếu thông tin để dự báo. Một nhược điểm khác trong các mô hình so sánh là coi các quan hệ có tầm quan trọng như nhau, nên không đánh giá được hết xu thế biến động của dữ liệu chuỗi thời gian.

So sánh đánh giá dựa trên quan hệ mờ bậc cao (QHM bậc cao)

Để chứng minh tính ưu việt của mô hình đề xuất FTS-1NT dựa trên QHM bậc cao, bốn mô hình chuỗi thời gian mờ bậc cao có tên là Hwang [84], C02 [48], S07 [62], S09 [85] được lựa chọn để so sánh. Kết quả và sai số dự báo thu được từ mô hình đề xuất FTS-1NT và các mô hình so sánh được hiển thị trong Bảng 2.21.

Bảng 2.21: Kết quả và sai dự báo MSE giữa mô hình FTS -1NT với các mô hình khác dựa trên QHM bậc cao khác nhau với số khoảng chia bằng 14.

Năm DL thực Hwang [84] S07s [62] C02 [48] S09 [85] FTS-1NT

75 1971 1972 1973 1974 1975 1976 1977 ---- 1991 1992 1993 MSE

Dựa vào kết quả trong Bảng 2.21, cho thấy mô hình đề xuất FTS-1NT đưa ra sai số dự báo với giá trị MSE = 3293.2 nhỏ hơn nhiều so với các mô hình so sánh dựa trên quan hệ mờ bậc 4 với 14 khoảng chia. Hơn nữa, mô hình cũng được mô phỏng trên từng bậc để so sánh với các mô hình bậc cao khác như mô hình C02 [48], Hwang [84], S09 [85] với số lượng khoảng chia được cố định bằng 14 khoảng. Chi tiết của kết quả so sánh dựa trên sai số MSE được đưa ra trong Bảng 2.22. Kết quả này, cũng được minh họa trực quan trên Hình 2.12 nhằm thể hiện thiên hướng dự báo tuyển sinh dựa trên các bậc khác nhau của các mô hình.

Bảng 2.22: So sánh sai số dự báo MSE của mô hình đề xuất so với các mô hình khác dựa trên QHM bậc cao với số khoảng chia bằng 14.

hình Bậc 2 Hwang 333171 C02 89093 S09 119189 FTS- 51259 1NT

Hình 2.12: Biểu diễn sai số dự báo MSE giữa hình FTS-1NT với các mô hình so sánh dựa trên các bậc khác nhau với 14 khoảng chia

76

Quan sát Bảng 2.22 và Hình 2.12 thấy rằng sai số dự báo trên từng bậc của mô hình được đề xuất FTS-1NT từ bậc 2 đến bậc 9 nhỏ hơn so với tất cả các mô hình so sánh trong bảng. Đặc biệt, đưa ra sai số dự báo nhỏ nhất với giá trị MSE

=3293.2 dựa trên quan hệ mờ bậc 4.

Các kết quả so sánh đề cập ở trên cho thấy, việc đề xuất NQHM-PTTG trong mô hình chuỗi thời gian mờ là khả thi và đưa ra kết quả đáng tin trên tập dữ liệu tuyển sinh. Thêm nữa việc lấy thông tin trong các khoảng nhỏ đã ảnh hưởng đáng kể đến kết quả dự báo của mô hình được đề xuất FTS-1NT.

Một phần của tài liệu Một số phương pháp nâng cao độ chính xác dự báo trong mô hình chuỗi thời gian mờ (Trang 84 - 88)

Tải bản đầy đủ (DOCX)

(165 trang)
w