Cá cv 医p"8隠 kinh t院 và công ngh羽

Một phần của tài liệu Mô hình hóa và điều khiển lưới điện nhỏ dạng lai ac (Trang 80 - 93)

S詠 phát tri吋n c栄a h羽 th嘘pi"p<pi"n逢嬰ng là m瓜t trong nh英ng n隠p"o„pi"e<p"e挨"

c栄a phát tri吋n kinh t院. M瓜t m衣pi"n逢噂k"p<pi"n逢嬰ng 鰻p"8鵜nh, tin c壱y và an toàn giúp tháo b臼 các rào c違n trong s違n xu医v"e pi"pj逢"eƒe"f詠 án nghiên c泳u quy mô l噂n. Vi羽c

泳ng d映ng các công ngh羽 m噂i vào phát tri吋n n隠n công nghi羽r"p<pi"n逢嬰ng giúp m荏 ra m瓜t th鵜 vt逢運ng m噂i v隠 thi院t b鵜 và công ngh羽. Các nghiên c泳u v隠 v壱t li羽u bán d磯n và siêu d磯p"8go"n衣i r医t nhi隠u ti隠o"p<pi"ejq"eƒe"o»"j·pj"ejw{吋p"8鰻i và truy隠n t違k"p<pi" n逢嬰ng. Các mô hình này ti院p nh壱n và truy隠n t違i m瓜v"n逢嬰ng công su医t c詠c l噂n v噂i t鰻n hao c詠c nh臼0"Vtqpi"v逢挨pi"nck."xk羽c truy吋n t違k"p<pi"n逢嬰ng DC b茨ng v壱t li羽u siêu d磯n s胤 tr荏 nên kh違 thi v噂i chi phí h嬰r"n#"x "eƒe"rj逢挨pi"ƒp"vjk"e»pi"jk羽u qu違.

6.2. K院t lu壱n

Eƒe"o»"j·pj"8逢嬰c trình bày trong lu壱p"x<p gi違i quy院v"8逢嬰c các v医p"8隠f逢噂i

‚ Liên k院t các mô hình HMG v噂i ch医v"n逢嬰pi"8k羽p"p<pi"x "8ƒr"泳pi"8衣t yêu c亥u c栄a tiêu chu育p"8員t ra.

‚ Mô hình ho衣v"8瓜ng 鰻p"8鵜nh v噂i các giá tr鵜 n茨m trong tiêu chu育n khi s穎

d映pi"o»"j·pj"p<pi"n逢嬰ng tái t衣o.

‚ K院t qu違 mô ph臼ng cho th医{"n逢噂k"8k羽n lai có th吋 ho衣v"8瓜ng 鰻p"8鵜nh 荏

ch院8瓜j”c"n逢噂i ho員e"eƒej"n{0"Ak羽n áp bus AC và DC 鰻p"8鵜nh có th吋 8逢嬰e"8違m b違q"mjk"eƒe"8k隠u ki羽n ho衣v"8瓜ng ho員c công su医t t違k"vjc{"8鰻i

荏 hai ch院8瓜.

Thông qua lu壱p"x<p này, các mô hình phát tri吋p"n逢噂k"8k羽n siêu nh臼 có thêm góc nhìn v隠rj逢挨pi"rjƒr"8k隠u khi吋p"e pi"pj逢"p¤pi"e医p h羽 th嘘pi"eƒe"n逢噂k"8k羽n liên k院t. Vi羽e"vtcq"8鰻i công su医t trong m瓜t h羽 th嘘pi"8瓜c l壱p có th吋8逢嬰e"v<pi"e逢運pi"8瓜

tin c壱{"e pi"pj逢"v pj"鰻p"8鵜nh nh運 vào s嘘n逢嬰ng các ngu欝n công su医t phân tán. Các ngu欝p"p<pi"n逢嬰ng phân tán này hoàn toàn có th吋n "p<pi"n逢嬰ng tái t衣o.

Thách th泳e"8員v"tc"ejq"eƒe"o»"j·pj"j逢噂pi"8院n gi違i quy院t các v医p"8隠 v隠 cân b茨ng t違i và công su医t ngu欝n ho員c tìm ra các gi違i pháp v隠v ej"p<pi"x "8k隠u ti院t công su医t t瑛 các ngu欝n công su医t khác nhau, tùy vào nhu c亥u t違i và kh違p<pi"ewpi"e医p

TÀI LI烏U THAM KH謂O

[1] J0"C0"Cnuktclk."ÐEqqrgtcvkxg"Rqygt"Ujctkpi"eqpvtqn"kp"Ownvk- terminal VSC-

HVDCÑ, MA Thesis, University of Waterloo, Canada, 2014.

[2] H. K. A. Alsiraji and E. F. El-uccfcp{."ÐEqqrgtcvkxg"cwvqpqoqwu"eqpvtqn"hqt"

active power sharing in multi-terminal VSC-JXFE.Ñ"Int. J. Process Syst. Eng., vol. 2, no. 4, pp. 303Î319, 2014.

[3] T0J0"Ncuugvgt."ÐOketqItkfu.Ñ"kp"Power Engineering Society Winter Meeting, 2002, pp. 305Î308.

[4] O0"Fcxctk"cpf"[0"C0"T0"K0"Oqjcogf."ÐTqdwuv"ownvk-objective control of VSC-

based DC-voltage power port in hybrid AC/DC multi-terminal micro-itkfu.Ñ"

IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1597Î1612, 2013.

[5] C. Wang, U0" Ogodgt." M0" [wcp." U0" Ogodgt." cpf" R0" Nk." ÐC" Rtqlgevkxg"

Integration Method for Transient Stability Assessment of Power Systems with

c"Jkij"Rgpgvtcvkqp"qh"Fkuvtkdwvgf"Igpgtcvkqp.Ñ IEEE Trans. Smart Grid vol. 3053, no. c, 2016.

[6] O0" G0" Dctcp" cpf" P0" T0" Ocjclcp." ÐFE" fkuvtkdwvkqp"for industrial systems:

qrrqtvwpkvkgu" cpf" ejcnngpigu.Ñ"IEEE Trans. Ind. Appl., vol. 39, no. 6, pp.

1596Î1601, 2003.

[7] Z0"N0"Z0"Nkw."R0"Y0"R0"Ycpi."cpf"R0"E0"N0"R0"E0"Nqj."ÐC"j{dtkf"CE1FE"oketq-

itkf.Ñ"kp"IPEC, Conference Proceedings, 2010, pp. 746Î751.

[8] H0"Dnccdlgti."R0"E0"Nqj."F0"Nk."cpf"[0"M0"Ejck."ÐCwvqpqoqwu"qrgtcvkqp"qh"ceÎ fe"oketqitkfu"ykvj"okpkokugf"kpvgtnkpmkpi"gpgti{"hnqy.Ñ"IET Power Electron., vol. 6, no. 8, pp. 1650Î1657, 2013.

[9] Z0" Nkw." R0" Ycpi." cpf" R0" E0" Nqj." ÐC" j{dtkf" CE1FE" oketqitkf"and its

eqqtfkpcvkqp"eqpvtqn.Ñ"IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278Î286, 2011.

[10] R0"E0"Nqj."F0"Nk."[0"M0"Ejck."cpf"H0"Dnccdlgti."ÐJ{dtkf"CE-DC microgrids

ykvj"gpgti{"uvqtcigu"cpf"rtqitguukxg"gpgti{"hnqy"vwpkpi.Ñ"IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1533Î1543, 2013.

[11] S. A. Arefifar, Y. A. R. I. Mohamed, and T. H. M. El-Hqwn{." ÐQrvkowo"

microgrid design for enhancing reliability and supply-ugewtkv{.Ñ"IEEE Trans.

Smart Grid, vol. 4, no. 3, pp. 1567Î1575, 2013.

[12] C. Gao, R. Yani."L0"Lkcq."cpf"¥0"Fqw."ÐRqygt"Eqpvtqn"Uvtcvgi{"Fgukip"kp"cp" Kuncpfgf" Oketqitkf" Dcugf" qp" Xktvwcn" Htgswgpe{.Ñ" kp" Renewable Power

Generation Conference, 2013, pp. 3Î6.

[13] L0"Ftkgugp"cpf"H0"Mcvktcgk."ÐFgukip"hqt"fkuvtkdwvgf"gpgti{"tguqwtegu.Ñ"IEEE

Power Energy Mag., vol. 6, no. 3, pp. 30Î40, 2008.

[14] Q0"Jchg¦"cpf"M0"Djcvvcejct{c."ÐQrvkocn"rncppkpi"cpf"fgukip"qh"c"tgpgycdng" gpgti{"dcugf"uwrrn{"u{uvgo"hqt"oketqitkfu.Ñ"Renew. Energy, vol. 45, pp. 7Î

15, 2012.

[15] R. W. Lobenstein and C. Sulzberger, "Eyewitness to dc history," IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 84-90, 2008.

[16] P. Wang, L. Goel, X. Liu, and F. H. Choo, "Harmonizing AC and DC: A Hybrid AC/DC Future Grid Solution," IEEE Power and Energy Magazine, vol. 11, no. 3, pp. 76-83, 2013.

[17] M. E. El-Hawary, Electrical energy systems. Crc Press, 2018.

[18] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.

[19] H. Jiayi, J. Chuanwen, and X. Rong, "A review on distributed energy resources and MicroGrid," Renewable & Sustainable Energy Reviews, vol. 12, no. 9, pp. 2472-2483, 2008.

[20] J. Cardell and R. Tabors, "Operation and control in a competitive market: distributed generation in a restructured industry," The Energy Journal, pp. 111-136, 1997.

[21] J. M. Guerrero, J. C. Vasquez, J. Matas, D. Vicuna, L. García, and M. Castilla,

"Hierarchical control of droop-controlled AC and DC microgridsÏA general

approach toward standardization," IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.

[22] X. Liu, P. Wang, and P. C. Loh, "A Hybrid AC/DC Microgrid and Its Coordination Control," IEEE Trans. Smart Grid, vol. 2, pp. 278-286, 2011. [23] J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R.

Teodorescu, "Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source ngh鵜ej"n逢ws," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1271-1280, 2013.

[24] A. N. Celik, "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey," Renewable energy, vol. 29, no. 4, pp. 593-604, 2004.

[25] T. Ackermann, G. Andersson, and L. Söder, "Distributed generation: a definition," Electric power systems research, vol. 57, no. 3, pp. 195-204, 2001. [26] M. Grubb, Renewable Energy Strategies for Europe: Foundations and Context.

Earthscan, 1995.

[27] M. Grubb and R. Vigotti, Renewable Energy Strategies for Europe: Electricity systems and primary electricity sources. Earthscan, 1995.

[28] M. Nehrir et al., "A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications," IEEE Transactions on Sustainable Energy, vol. 2, no. 4, pp. 392-403, 2011.

[29] B. Horner, R. D. Jeffery, and C. M. E. Krogh, "Literature Reviews on Wind Turbines and Health Are They Enough?," Bulletin of Science, Technology & Society, vol. 31, no. 5, pp. 399-413, 2011.

[30] C. D. Feinstein, R. Orans, and S. W. Chapel, "The distributed utility: A new electric utility planning and pricing paradigm," Annual Review of Energy and the Environment, vol. 22, no. 1, pp. 155-185, 1997.

[31] M. Ilic, R. Tabors, and J. Chapman, "Conceptual design of distributed utility system architecture: Final report," Technical report, Massachusetts Institute of Technology 1994.

[32] S. Anand, B. G. Fernandes, and J. Guerrero, "Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1900-1913, 2013.

[33] N. Author, "Review of electrical energy storage technologies and systems and of their potential for the UK," EA Technology, vol. 1, p. 34, 2004.

[34] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review," Progress in natural science, vol. 19, no. 3, pp. 291-312, 2009.

[35] H. Chen, Y. Ding, T. Peters, and F. Berger, "Method of Storing Energy and a Cryogenic Energy Storage System," US Patent, Pub. No: US20160178129A1, 2016.

[36] J. Makansi and J. Abboud, "Energy storage: the missing link in the electricity value chain," Energy Storage Council White Paper, vol. 1, pp. 10-17, 2002. [37] H. Zhao, Q. Wu, S. Hu, H. Xu, and C. N. Rasmussen, "Review of energy

storage system for wind power integration support," Applied Energy, vol. 137, pp. 545-553, 2015.

[38] J. Hua, Q. Ai, and Y. Yao, "Dynamic equivalent of microgrid considering flexible components," IET Generation, Transmission & Distribution, vol. 9, no. 13, pp. 1688-1696, 2015.

[39] S. K. Sahoo, A. K. Sinha, and N. Kishore, "Control techniques in AC, DC, and

hybrid ACÎDC microgrid: A review," IEEE Trans. Emerg. Sel. Topics Power

Electron, vol. 6, no. 2, pp. 738-759, 2018.

[40] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, "Autonomous operation of hybrid microgrid with AC and DC subgrids," IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.

[41] C. Dou, N. Li, D. Yue, and T. Liu, "Hierarchical hybrid control strategy for microgrid switching stabilisation during operating mode conversion," IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2880-2890, 2016. [42] F. Nejabatkhah and Y. W. Li, "Overview of power management strategies of

hybrid AC/DC microgrid," IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, 2015.

[43] M. Abuhilaleh, L. Li, M. Begum, and J. Zhu, "Power management and control strategy for hybrid AC/DC microgrids in autonomous operation mode," in Electrical Machines and Systems (ICEMS), 2017 20th International Conference on, 2017, pp. 1-6: IEEE.

[44] E. Unamuno and J. A. Barrena, "Hybrid ac/dc microgridsÏPart II: Review and

classification of control strategies," Renewable & Sustainable Energy Reviews, vol. 52, pp. 1123- 1134, 2015.

[45] X. Zhou et al., "A microgrid cluster structure and its autonomous coordination control strategy," International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69-80, 2018.

[46] H. A. Alsiraji, A. A. A. Radwan, and R. El-Shatshat, "Modelling and analysis of a synchronous machine-emulated active intertying chuy吋p" 8鰻i in hybrid

AC/DC microgrids," IET Generation, Transmission & Distribution, vol. 12, no. 11, pp. 2539- 2548, 2018.

[47] B. John, A. Ghosh, F. Zare, and S. Rajakaruna, "Improved control strategy for accurate load power sharing in an autonomous microgrid," IET Generation, Transmission & Distribution, vol. 11, no. 17, pp. 4384-4390, 2017.

[48] M. Nehrir et al., "A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications," IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 392-403, 2011.

[49] Rema V K, R Dhanalakshmi."ÐOperation of Hybrid AC-DC Microgrid with an

Interlinking Chuy吋p"8鰻iÑ."2014 IEEE International Conference on Advanced Communication Control and Computing Teclmologies (ICACCCT)

[50] Poh Chiang Loh, Senior Member, IEEE, Ding Li, Yi Kang Chai, and Frede Blaabjerg, "Autonomous Control of Interlinking Chuy吋p" 8鰻i with Energy

Storage in Hybrid ACÎDC Microgrid", Fellow, IEEE, May/June 2013

[51] O0"G0"Tqrr"cpf"U0"Iqp¦cng¦."ÐFgxgnqrogpv"qh"c"OCVNCD1ukownkpm"oqfgn"qh"

a single-phase grid-eqppgevgf" rjqvqxqnvcke" u{uvgo.Ñ"IEEE Trans. Energy Conv., vol. 24, no. 1, pp. 195Î202, Mar. 2009.

[52] M0" J0" Ejcq." E0" L0" Nk." cpf" U0" J0" Jq." ÐOqfgnkpi" cpf" hcwnv" ukownction of photovoltaic generation systems using circuit-dcugf"oqfgn.Ñ"kp"Proc. IEEE Int.

Conf. Sustainable Energy Technol., Nov. 2008, pp. 290Î294.

[53] Q0"Vtgodnc{."N0"C0"Fguuckpv."cpf"C0"K0"Fgmmkejg."ÐC"igpgtke"dcvvgt{"oqfgn"hqt"

the dynamic simulation of h{dtkf"gngevtke"xgjkengu.Ñ"kp"Proc. IEEE Veh. Power

Propulsion Conf. (VPPC 2007), pp. 284Î289.

[54] F0"Y0"¥jk"cpf"N0"Zw."ÐFktgev"rqygt"eqpvtqn"qh"FHKI"ykvj"eqpuvcpv"uykvejkpi" htgswgpe{"cpf"kortqxgf"vtcpukgpv"rgthqtocpeg.Ñ"IEEE Trans. Energy Conv., vol. 22, no. 1, pp. 110Î118, Mar. 2007.

[55] N0" Dq" cpf" O0" Ujcjkfgjrqwt." ÐUjqtv-term scheduling of battery in a grid-

eqppgevgf"RX1dcvvgt{"u{uvgo.Ñ"IEEE Trans. Power Syst., vol. 20, no. 2, pp.

1053Î1061, May 2005.

[56] U0"C0"Fcpkgn"cpf"P0"CoocuckIqwpfgp."ÐC"pqxgn"j{dtkf"kuqncvgf"igpgtcvkpi"

system based on PV fed ngh鵜ej"n逢w-assisted wind-ftkxgp"kpfwevkqp"igpgtcvqtu.Ñ"

IEEE Trans. Energy Conv., vol. 19, no. 2, pp. 416Î422, Jun. 2004.

[57] E0" Ycpi" cpf" O0" J0" Pgjtkt." ÐRqygt" ocpcigogpv" qh" c" uvcpf-alone

ykpf1rjqvqxqnvcke1hwgn"egnn"gpgti{"u{uvgo.Ñ"IEEE Trans. Energy Conv., vol. 23, no. 3, pp. 957Î967, Sep. 2008.

[58] L. Jong-Lick and C. Chin-Jwc."ÐUocnn-signal modeling and control of ZVT-

PWM chuy吋p"8鰻k"v<pi"ƒru.Ñ"IEEE Trans. Power Electron., vol. 18, no. 1, pp. 2Î10, Jan. 2003.

[59] Y. Sozer and D. A. Torrey, ÐOqfgnkpi"cpf"eqpvtqn"qh"wvknkv{"kpvgtcevkxg"ngh鵜ch

n逢w.Ñ"IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2475Î2483, Nov. 2009. [60] N. Kroutikova, C. A. Hernandez-Ctcodwtq." cpf" V0" E0" Itggp." ÐUvcvgurceg"

model of grid-connected ngh鵜ej"n逢ws under currenv"eqpvtqn"oqfg.Ñ"IET Elect. Power Appl., vol. 1, no. 3, pp. 329Î338, 2007.

[61] H0"Nkw."U0"Fwcp."H0"Nkw."D0"Nkw."cpf"[0"Mcpi."ÐC"xctkcdng"uvgr"uk¦g"KPE"ORRV" ogvjqf"hqt"RX"u{uvgou.Ñ"IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622Î

2628, Jul. 2008.

[62] F0"Ugtc."T0"Vgqfqtguew."L0"Jcpvuejgn."cpf"O0"Mpqnn."ÐQrvkok¦gf"oczkowo"

power point tracker for fast-ejcpikpi"gpxktqpogpvcn"eqpfkvkqpu.Ñ"IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2629Î2637, Jul. 2008.

[63] D0" Dt{cpv" cpf" O0" M0" Mc¦kokgte¦wm." ÐXqnvcig loop of boost PWM DC-DC chuy吋p"8鰻i with peak current-oqfg"eqpvtqn.Ñ"IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 99Î105, Jan. 2006.

[64] S. Arnalte, J. C. Burgos, and J. L. Rodriguez-cogpgfq."ÐFktgev"vqtswg"eqpvtqn"

of a doubly-fed induevkqp"igpgtcvqt"hqt"xctkcdng"urggf"ykpf"vwtdkpgu.Ñ"Elect.

Power Compon. Syst., vol. 30, no. 2, pp. 199Î216, Feb. 2002.

[65] Y0"U0"Mko."U0"V0"Lqw."M0"D0"Ngg."cpf"U0"Ycvmkpu."ÐFktgev"rqygt"eqpvtqn"qh"c"

doubly fed induction generator with a fixed switching ftgswgpe{.Ñ"kp"Proc.

IEEE Ind. Appl. Soc. Annu. Meet., Oct. 2008, pp. 1Î9.

[66] G0" Mqwvtqwnku" cpf" M0" Mcnckv¦cmku." ÐFgukip" qh" c" oczkowo" rqygt" vtcemkpi"

system for wind-energy-eqpxgtukqp"crrnkecvkqpu.Ñ"IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486Î494, Apr. 2006.

[67] C0"J0"Cpdwm{"cpf"R0"G0"Rcueqg."ÐXTNC"dcvvgt{"uvcvg-of-charge estimation in

vgngeqoowpkecvkqp"rqygt"u{uvgou.Ñ"IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 565Î573, Jun. 2000.

[68] M0"Mwvnwc{."[0"Ecfktek."[0"U0"Q¦mc¦cpe."cpf"K0"Ecfktek."ÐC"pgy"qpnkpg"uvcvg- of-charge estimation and monitoring system for sealed lead-acid batteries in

vgngeqoowpkecvkqp"rqygt"uwrrnkgu.Ñ"IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1315Î1327, Oct. 2005.

[69] K. Kyung-Hwan, P. Nam-Joo, and H. Dong-Ugqm." ÐCfxcpegf"u{pejtqpqwu"

reference frame controller for three-phase UPS powering unbalanced and

pqpnkpgct"nqcfu.Ñ"kp"Proc. Power Electron. Specialists Conf., 2005, pp. 1699Î

1704.

[70] R0"E0"Nqj."O0"L0"Pgyocp."F0"P0"¥oqqf."cpf"F0"I0"Jqnogu."ÐC"eqorctcvkxg"

analysis of multiloop voltage regulation strategies for single and three-phase UPS sysvgou.Ñ"IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1176Î1185, Sep. 2003.

[71] N0" C0" E0" Nqrgu" cpf" J0" Uwp." ÐRgthqtocpeg" cuuguuogpv" qh" cevkxg" htgswgpe{" ftkhvkpi"kuncpfkpi"fgvgevkqp"ogvjqfu.Ñ"IEEE Trans. Energy Conv., vol. 21, no. 1, pp. 171Î180, Mar. 2006.

[72] V0"V0"Oc."ÐPqxgn"xqnvcig"uvcdknkv{"eqpuvtckpgf"rqukvkxg"hggfdcem"cpvkkuncpfkpi"

algorithms for the ngh鵜ej" n逢w-dcugf" fkuvtkdwvgf" igpgtcvqt" u{uvgou.Ñ" IET

PH影 L影C

Code MATLAB thu壱t toán MPPT P&O

function D = PandO(Param, Enabled, V, I)

% MPPT controller based on the Perturb & Observe algorithm. % D output = Reference for DC link voltage (Vdc_ref)

%

% Enabled input = 1 to enable the MPPT controller % V input = PV array terminal voltage (V)

% I input = PV array current (A) %

% Param input:

Dinit = Param(1); %Initial value for Vdc_ref

Dmax = Param(2); %Maximum value for Vdc_ref

Dmin = Param(3); %Minimum value for Vdc_ref

deltaD = Param(4); %Increment value used to increase/decrease Vdc_ref %

persistent Vold Pold Dold; dataType = 'double'; if isempty(Vold) Vold=0; Pold=0; Dold=Dinit; end P= V*I; dV= V - Vold; dP= P - Pold; if dP ~= 0 & Enabled ~=0 if dP < 0 if dV < 0 D = Dold + deltaD; else D = Dold - deltaD; end else if dV < 0 D = Dold - deltaD; else D = Dold + deltaD; end end else D=Dold; end if D >= Dmax | D<= Dmin D=Dold; end Dold=D;

Vold=V; Pold=P;

PH井N LÝ L卯CH TRÍCH NGANG

- H丑 và tên: Nguy宇p"A泳e"A<pi"Mjqc

- Pi {."vjƒpi."p<o"ukpj<"4412:13;;9

- P挨k"ukpj<"vj pj"rj嘘 Biên Hòa, T雨pj"A欝ng Nai

- A鵜a ch雨 liên l衣c: 66/56/28 Bùi Tr丑pi"Pij c."mjw"rj嘘4C."rj逢運ng Tr違ng Dài, thành ph嘘 Biên Hòa, t雨pj"A欝ng Nai

SWè"VTîPJ"AÉQ"V萎O

- 2015 Î 2019: Sinh viên t衣k"Vt逢運pi"A衣i h丑c Bách Khoa ÎAJSI"Î Tp. HCM, chuyên ngành K悦 thu壱v"Ak羽n-Ak羽n t穎."ej逢挨pi"vt·pj"8 q"v衣o ej pj"sw{."8衣i trà. - 2019 Î 2021: H丑c viên cao h丑c t衣k"Vt逢運pi"A衣i h丑c Bách Khoa ÎAJSI"Î Tp.

HCM, chuyên ngành K悦 thu壱v"8k羽n.

QUÁ TRÌNH CÔNG TÁC

- 07/2020 Î 04/2021: K悦u逢"vjk院t k院8k羽n t衣i Shinryo Vietnam Corporation - 04/2021 Î Nay: K悦 u逢"j羽 th嘘ng công nghi羽p (Industrial Engineer) t衣i Greif

Một phần của tài liệu Mô hình hóa và điều khiển lưới điện nhỏ dạng lai ac (Trang 80 - 93)