Các yếu tố ảnh hưởng đến khả năng quang xúc tác của g-C3N4

Một phần của tài liệu Nghiên cứu chế tạo và khảo sát tính chất quang xúc tác của hệ vật liệu graphitic carbon nitride (Trang 27 - 30)

1.3.2.1. Ảnh hưởng của điều kiện chế tạo

- Với các phương pháp chế tạo mẫu khác nhau đều dẫn đến những ảnh hưởng nhất định tới cấu trúc và tính chất của vật liệu g-C3N4. Ngoài việc ảnh hưởng tới pha cấu trúc, phương pháp và các yếu tố chế tạo cũng ảnh hưởng tới khả năng quang xúc tác của vật liệu.

- Với g-C3N4 được điều chế bằng cách đốt melamine trong điều kiện có khí Ar trong khoảng thời gian 2h, các mẫu g-C3N4 thu được đơn pha từ 300 oC, có 2 pha chủ yếu là pha 𝛼 và pha 𝛽. Với cách chế tạo này mẫu thu được khá tinh khiết, tuy nhiên bề rộng vùng cấm lớn (3,6 eV) nên khả năng quang xúc tác không cao.

- Với một số nghiên cứu về sự ảnh hưởng của thời gian nung lên tính chất quang xúc tác của g-C3N4 cho kết luận rằng với thời gian nung phù hợp, khả năng quang xúc tác của mẫu mới tốt.

- Tuy nhiên, các kết quả nghiên cứu gần đây cho thấy hiệu quả quang xúc tác của g-C3N4 tinh khiết chưa cao. Nguyên nhân g-C3N4 tinh khiết có tốc độ tái kết hợp cặp electron-lỗ trống quang sinh lớn. Để khắc phục nhược điểm này, nhiều phương pháp đã được áp dụng để biến tính g-C3N4 như tổng hợp g-C3N4 dưới dạng cấu trúc mao quản [31], kết hợp g-C3N4 với các vật liệu khác bằng cách pha tạp hoặc ghép kĩ thuật [32, 33]. Việc pha tạp chất vào g-C3N4 là một phương pháp tốt để cải thiện khả năng quang xúc tác dưới ánh sáng khả kiến của g-C3N4. Một trong những phương pháp hiệu quả cũng được quan tâm nghiên cứu là kết hợp g-C3N4 với một loại vật liệu bán dẫn khác để tạo thành vật liệu composit [34, 35]. Các nghiên cứu bước đầu đã chỉ ra rằng composite trên

nền g-C3N4 cho hiệu suất quang xúc tác cao hơn so với g-C3N4 tinh khiết. Tuy vậy, hướng nghiên cứu này còn chưa hệ thống. Đặc biệt, số lượng các công bố khoa học trên loại vật liệu này ở Việt Nam vẫn còn rất hạn chế. Việc nghiên cứu một cách hệ thống nhằm tìm ra một phương pháp thực nghiệm phù hợp cũng như tìm ra loại vật liệu thành phần phù hợp cho việc chế tạo vật liệu composite nền g-C3N4 có hiệu suất quang xúc tác cao cần được quan tâm phát triển.

1.3.2.1a. Pha tạp

Như đã đề cập ở trên, nhiều công trình chỉ ra rằng polyme cacbonnitrua có cấu trúc như graphit (g-C3N4). Polime hữu cơ bán dẫn này đang thu hút được sự quan tâm trên toàn thế giới do những đặc tính rất tốt của nó như có năng lượng vùng cấm thích hợp (2,7 eV), ổn định ở nhiệt cao, bền và có tính năng quang hóa rất tốt. Đây là một xúc tác quang không kim loại đầy hứa hẹn trong phân hủy các chất hữu cơ ô nhiễm trong vùng ánh sáng khả kiến và phân tích nước thành hydro và oxy. Để cải thiện hiệu suất xúc tác quang của g-C3N4, có nhiều nghiên cứu khác nhau được tiến hành, trong đó có pha tạp g-C3N4 bằng phi kim. Việc pha tạp g-C3N4 bởi nhiều nguyên tố khác nhau như B, C, P và S [36, 37] đã được tiến hành thành công, kết quả về hoạt tính xúc tác quang của các vật liệu đã được cải thiện rất nhiều. Việc pha tạp g-C3N4

bởi các nguyên tố phi kim đã và đang mở ra một hướng nghiên cứu mới, điều chế các vật liệu có hiệu quả xúc tác quang tốt dưới ánh sáng khả kiến, đáp ứng các yêu cầu thực tiễn đặt ra.

Một trong các hướng nghiên cứu được đưa ra là pha tạp thêm một số nguyên tố như K, Na, S, TiO2… để đạt được một số mục đích như trên.

Hình 1.12. Sơ đồ bề rộng vùng cấm của vật liệu g-C3N4 (trái) và vật liệu g-C3N4 đã pha tạp với nguyên tố khác (phải)[38]

Như vậy, việc pha tạp một số nguyên tố khác vào g-C3N4 đang là một trong những hướng nghiên cứu được quan tâm và đánh giá cao bởi khả năng thay đổi bề rộng vùng cấm cũng như thay đổi khả năng quang xúc tác của mẫu.

1.3.2.1b. Composite

Ngoài cách pha thêm một số nguyên tố khác vào g-C3N4, một hướng nghiên cứu khác cũng được quan tâm hiện nay là composite các vật liệu với g-C3N4. Với việc composite g-C3N4 với TiO2, lượng ánh sáng được hấp thụ so với g-C3N4 tinh khiết đã cao hơn hẳn (từ ít hơn 4% với g-C3N4 tinh khiết và cao hơn 50% với vật liệu composite).

Ngoài ra việc composite với ZnWO4 cũng được đánh giá cao khi cho kết quả xử lí quang xúc tác tốt hơn hẳn so với g-C3N4 ban đầu.

Chương 2 THỰC NGHIỆM

Trong chương này chúng tôi trình bày hai nội dung chính:

- Quy trình chế tạo vật liệu g-C3N4 theo phương pháp polymer hóa ure ( hay còn gọi là phản ứng đồng trùng ngưng) trong không khí, với nhiệt độ nung ở 550oC (thời gian phản ứng) ở các thời gian khác nhau.

- Nguyên lí của các phép đo được sử dụng để nghiên cứu tính chất của vật liệu chế tạo được như kính hiển vi điện tử quét, nhiễu xạ tia X, hấp thụ, huỳnh quang, quang xúc tác, FTIR.

Một phần của tài liệu Nghiên cứu chế tạo và khảo sát tính chất quang xúc tác của hệ vật liệu graphitic carbon nitride (Trang 27 - 30)

Tải bản đầy đủ (PDF)

(57 trang)