Xét trường hợp đối tượng phi tuyến tính có độ phức tạp cao, nếu sử dụng phương pháp giải tích thông thường để nhận dạng sẽ rất khó khăn, thậm chí không thực hiện được do sự hiểu biết nghèo nàn về đối tượng. Vì vậy các nhà khoa học đã đưa ra ý tưởng là sử dụng công cụ tính toán mềm như hệ mờ, mạng nơron, đại số gia tử để xấp xỉ. Mạng nơron là một trong những công cụ hữu hiệu để nhận dạng mô hình đối tượng. Bằng phương pháp này ta không biết được mô hình toán thực sự của đối tượng nhưng hoàn toàn có thể dùng kết quả xấp xỉ để thay thế đối tượng.
Vì tính phi tuyến của các mạng nơron (hàm kích hoạt phi tuyến), chúng được dùng để mô tả các hệ thống phi tuyến phức tạp. Mạng nơron là một trong những công cụ nhận dạng tốt nhất vì các đặc trưng sau: khả năng học từ kinh nghiệm hay được huấn luyện, khả năng khái quát hoá cho các đầu vào không được huấn luyện.
Mạng nơron có khả năng xấp xỉ các hàm phi tuyến một cách đầy đủ và chính xác, nó được sử dụng tốt cho các mô hình động học phi tuyến. Điều quan trọng được sử dụng là thuật truyền ngược tĩnh và động của mạng nơron, nó được sử dụng để hiệu chỉnh các tham số trong quá trình nhận dạng.
Nền tảng cho tính xấp xỉ hàm của mạng nơron nhiều lớp là định lý Kolmgorov và định lý Stone - Weierstrass. Các mạng Nơron nhân tạo đưa ra những lợi thế qua việc học sử dụng phân loại và xử lý song song, điều này rất phù hợp với việc dùng trong nhận dạng.