Sự mở rộng quang phổ trong một filament

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu đặc trưng phổ của các xung laser cực ngắn trong khí ar (Trang 38 - 42)

  0 2  0 0 2 0 1 e L k n I B k n I A          (1.44)

trong đó, I0 là cường độ tại đầu vào của ống capillary, là mật độ khí và

1

A Tr là mất mát truyền toàn phần trong ống dẫn sóng.

Đối với cùng một tích phân B, do đó cùng một hệ số mở rộng, một ống capillary dài hơn với bán kính trong lớn hơn cho mất mát tuyến tính ít hơn.

Tóm lại

Các ống capillary cung cấp một phương pháp chuẩn để mở rộng quang phổ do chất lượng chùm tia tốt trên một dải áp suất rộng, và sự đồng nhất quang phổ cao trên mặt cắt chùm tia. Những đặc điểm này cho phép nén xung chất lượng cao. Phổ đầu ra từ một ống capillary đặc biệt thích hợp cho các bộ nén xung sử dụng cặp gương - chirp. Tuy nhiên, sự liên kết của ống, cùng với sự ổn định của chùm tia là rất quan trọng, vì cả hai đều có tác động đáng kể đến hiệu quả ghép nối và chất lượng của profile chùm. Hơn nữa, các ống dài hơn là cần thiết trong việc tìm kiếm công suất cao hơn và xung ngắn hơn, nhưng việc xử lý chúng có thể gặp khó khăn.

1.3. Sự mở rộng quang phổ trong một filament

Một cách khác để truyền dẫn ánh sáng, đòi hỏi sự sắp xếp thực nghiệm đơn giản hơn, là dùng sự tạo thành các sợi (filament) [36]. Tia laser được hội tụvào một môi trường điện môi hoặc một chất khí theo cách như vậy, ngay sau khi hội tụ, sự tự hội tụ cân bằng với sự phân kỳ của chùm tia. Các chùm tia sau đó tự dẫn (self-guided), tạo ra một filament.

Sau khi được hội tụ, một chùm tia thường mở rộng trở lại do nhiễu xạ. Chiều dài lan truyền sau khi độ rộng eo chùm tăng lên 2 lần được gọi là chiều dài Rayleigh, và có thể được biểu diễn dưới dạng:

2 0 0 R n z     (1.45)

Tuy nhiên, nếu công suất cực đại của laser đạt tới công suất tới hạn để tự hội tụ bằng phương trình (1.13), nghĩa là PLaserPcrit, hiệu ứng thấu kính Kerr chính xác cân bằng với sự phân kỳ của chùm tia do nhiễu xạ và chùm dừng phân kỳ hoặc hội tụ, tức là, nó tự dẫn. Tuy nhiên, hiệu ứng này không ổn định và không có hiệu ứng bổ sung, nó sẽ không giữ được hơn 10zR.

Nếu PLaser > Pcrit, sự tự hội tụ vượt qua sự phân kỳ, và chùm tia cuối cùng sẽ tự phá hủy (collapse on itself). Chiều dài truyền mà chùm tia phá hủy cũng xấp xỉ bằng công thức bán thực nghiệm [37, 38]: 2 2 0,367 [( / ) 0,852] 0, 0219 R cr in crit z z P P    (1.46)

với Pin là công suất ban đầu của xung và Pcrit là công suất tới hạn của xung. Tuy nhiên, khi chùm tia trở nên nhỏ hơn do sự tự hội tụ, cường độ đỉnh trở nên cao hơn và cuối cùng, môi trường bị ion hóa. Sự ion hóa này dẫn đến việc làm phân kỳ plasma, ngăn không cho chùm tia bị phá hủy. Các chùm tia mở rộng và ion hóa dừng lại, nhưng công suất đỉnh vẫn có thể đủ cao để tự hội tụ. Trong trường hợp này, chùm tia co lại cho đến khi ion hóa xảy ra lần nữa. Quá trình chuỗi động học của sự hội tụ và phân kỳ này (minh họa trong hình 1.15) cung cấp khả năng tự dẫn chùm. Hàng loạt các plasma bị ion hóa được xem như một kênh phát quang. Điều này được gọi là sự filament. Mất mát năng lượng trong quá trình filament được giảm thiểu do cường độ chủ yếu được duy trì dưới ngưỡng ion hóa của môi trường.

Hình 1.15: Nguyên lý của sự filament [58].

Chùm được hội tụ trong một môi trường điện môi hay một chất khí. Khi chùm trở lên nhỏ hơn, cường độ đỉnh trở lên cao hơn, và cuối cùng sự ion hóa môi trường tạo ra một plasma. Kết quả là các electron tự do dẫn đến sự phân kỳ plasma và chùm tia lại mở rộng ra. Cuối cùng, cường độ đỉnh trở nên quá thấp để ion hóa môi trường và sự tự hội tụ tự mất đi, sự hội tụ lại chùm tia và quá trình lặp lại chính nó.

Mặt khác, nếu PLaser >> Pcrit, tính phi tuyến cao có thể gây ra trạng thái đồng nhất ban đầu để phát triển các cấu trúc không gian; điều này được gọi là sự biến điệu bất ổn định [39]. Trong trường hợp filament, điều này có nghĩa là sự nhiễu loạn nhỏ dọc theo profile ngang có thể dẫn đến tự hội tụ cục bộ, điều này sẽ tạo ra đa filament, làm suy giảm profile chùm đến mức mà chùm tia trở nên không thể sử dụng được cho hầu hết các thí nghiệm.

Trong thực tế, công suất laser từ 4 đến 10 lần công suất tới hạn là cần thiết cho quá trình filament để bắt đầu khi chùm tia được hội tụ vào chất khí. Tuy nhiên, một khi được hình thành, filament chỉ cần khoảng 1 lần công suất tới hạn. Công suất dư thừa bị đẩy vào cái gọi là "hồ chứa (reservoir)" (chùm

phân kỳ xung quanh lõi filament) khi plasma đầu tiên được hình thành. Do đó, sự filament thường dẫn đến hiệu suất thấp hơn so với các capillary rỗng.

Việc mở rộng phổ rộng nhất có thể phát sinh từ sự filament do các hiệu ứng kết hợp của SPM, tự nghiêng, sự ion hóa và làm mất hội tụ plasma. Chùm sáng được tạo ra bao gồm một phần trung tâm màu trắng bao quanh bởi phát xạ hình nón giống như cầu vồng.

CHƯƠNG 2: PHƯƠNG PHÁP THỰC NGHIỆM

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu đặc trưng phổ của các xung laser cực ngắn trong khí ar (Trang 38 - 42)