Phỏng sinh học

Một phần của tài liệu Công nghệ sinh học Nano (Trang 27 - 28)

Trong tương lai, các hệ thống vật liệu chức năng được phát triển cho công nghệ sinh học nano hoặc công nghệ nano có thể gồm protein (hình 27). Chúng tham gia vào quá trình lắp ráp, chế tác và chắc chắn, trong cấu trúc sản phẩm cuối cùng, mang lại các chức năng đặc biệt, có thể điều khiển tương tự các cấu trúc trong mô xốp và rắn sinh học. Trong lĩnh vực phỏng sinh học phân tử (molecular biomimetic, MB)- trong đó kết hợp hài hòa các lĩnh vực sinh học và vật lý truyền thống- có thể tạo ra các vật liệu lai được lắp ráp từ mức phân tử sử dụng các tính chất nhận biết và gắn đặc biệt của protein với các chất vô cơ. MB mang lại ba giải pháp giúp điều khiển và chế tác cấu trúc nano quy mô lớn cũng như lắp ráp các vật liệu hai, ba chiều một cách có trật tự (hình 27). Giải pháp thứ nhất là chọn lọc là thiết kế ở mức phân tử và di truyền các peptide, protein gắn chất vô cơ. Điều này cho phép đạt được khả năng điều khiển ở những mô thức nhỏ nhất. Thứ hai, có thể sử dụng các protein này làm chất kết nối hay các tập hợp lắp ráp phân tử để liên kết thực thể phân tử, bao gồm hạt nano, polymer chức năng hoặc các cấu trúc khác trên khuôn phân tử.

Figure 30

Hình 27. Khả năng sử dụng của các protein gắn chất vô cơ: (a) thể liên kết để cố định hạt nano. (b) các phân tử chức năng lắp ráp trên cơ chất đặc biệt. (c) thể kết nối đa năng gồm 2 protein tiếp giáp với các đơn vị vô cơ nano. NSL, thể kết nối không đặc hiệu [Theo 109]. Giải pháp thứ ba là tự lắp ráp và/hoặc đồng lắp ráp các phân tử sinh học thành cấu trúc nano có trật tự. Điều này đảm bảo một quá trình lắp ráp tinh vi để tạo ra các cấu trúc nano phức tạp, và có thể là các cấu trúc có thứ bậc, tương tự trong tự nhiên.

Figure 31

Hình 28. Tiềm năng ứng dụng của MB trong công nghệ nano và công nghệ sinh học nano sử dụng các polypeptide biến đổi di truyền gắn chất vô cơ [Theo 38]. Chỉ một vài polypeptide đã được xác định là gắn đặc hiệu với các chất vô cơ. Chúng hầu hết là các protein khoáng hóa sinh học, tiết ra từ mô rắn (hard tissue) sau khi được phân tách, tinh chế và tách dòng. Mặc dù cách tiếp cận này khó, tốn thời gian và có nhiều giới hạn lớn, một số protein tách theo cách này đã được sử dụng như enzyme để tổng hợp các chất vô cơ nhất định. Cách tiếp cận phổ biến hơn là thu polypeptide gắn chất hữu cơ nhờ các kỹ thuật sinh học. Trong cách tiếp cận này, một lượng lớn, thư viện ngẫu nhiên được sàng lọc để xác định các trình tự đặc hiệu gắn tốt với vật liệu hữu dùng trong thực nghiệm. Đạt được điều này sẽ là một nhảy vọt phi thường, với khả năng tạo ra các khối cấu trúc nano trong đó protein và tính chất gắn của nó được tạo ra nhờ kỹ thuật DNA trong khi thành phần vô cơ mang các chức năng đặc biệt (như điện, quang, từ). Các polypeptide gắn này (hay các protein nhỏ) được gọi là các protein kỹ thuật di truyền cho chất vô cơ [38].

Một phần của tài liệu Công nghệ sinh học Nano (Trang 27 - 28)

Tải bản đầy đủ (DOC)

(48 trang)
w