Hƣớng nghiên cứu:

Một phần của tài liệu Nghiên cứu quá trình gia công tia lửa điện trong dung dịch có trộn bột titan kết hợp hệ thống rung động tần số thấp trên chi tiết (Trang 124 - 134)

Nghiên cứu ảnh hƣởng của các loại bột cùng với các rung động có biên độ, tần số khác nhau đến quá trình gia công.

Nghiên cứu sử dụng các phƣơng pháp mô phỏng để làm rõ tác động qua lại giữa rung động và bột trong khe hở gia công.

110

Luận án mới đề xuất đƣợc các bộ thông số công nghệ hợp lý, bởi vậy cần thiết phải có các nghiên cứu sử dụng kỹ thuật tối ƣu khác phù hợp để xác định chính xác các giá trị tối ƣu.

Phân tích làm rõ tổ chức lớp bề mặt sau PMEDM, để từ đó đề ra các giải pháp ứng dụng phù hợp vào thực tiễn sản xuất.

111

TÀI LIỆU THAM KHẢO

1. V. D. Bui, J. W. Mwangi, and A. Schubert, ―Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces,‖ J. Manuf. Process., vol. 44, no. November 2018, pp. 261–270, 2019.

2. G. Talla, Powder-mixed Electric Discharge Machining ( PMEDM ) of Inconel 625 Powder-mixed Electric Discharge Machining ( PMEDM ) of Inconel 625. 2016. 3. Lazarenko, B.R. (1943): About the inversion of metal erosion and methods to fight

ravage of electric contacts, WEI-Institute, Moscow in Russian

4. A. S. Todkar, M. S. Sohani, G. S. Kamble, R. B. Nikam, and K. E. Work, ―Effects of Vibration on Electro Discharge Machining Processes,‖ Int. J. Eng. Innov. Technol., vol. 3, no. 1, pp. 270–275, 2013.

5. A. Erden, S. Bilgin, "Role of impurities in electric discharge machining", The 21th International Machine Tool Design and Research Conference, Macmillan, London, pp. 345–350, 1980

6. Jeswani, M.L. Effects of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear, 70, pp.133–139. 1981 7. Yan, B.H.; Chen, S.L. (1993): Effects of dielectric with suspended aluminum

powder on EDM, Journal of the Chinese Society of Mechanical Engineers, vol.14, and pp.307-312

8. Tzeng, Y.F. and Lee, C.Y. Effects of powder characteristics on electro discharge machining efficiency. International Journal of Advanced Manufacturing Technology, 17, pp.586–592. 2001

9. Kansal, H.K., S. Singh, and P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel. Journal of Manufacturing Processes, 2007. 9(1): p. 13-22

10. Kung, K.-Y., Horng, J.-T. and Chiang, K.-T. Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt- bonded tungsten carbide, International Journal of Advanced Manufacturing Technology, 40, pp.95–104. 2009

112

11. Kun LingWu,Biing HwaYan,Jyh-WeiLee,Chun GianDing(2009). Study on the characteristics of electrical discharge machining using dielectric with surfactant, Journal of Materials Processing Technology, Volume 209, Issue 8, 21 April 2009, Pages 3783-3789

12. Anil Kumar. (2007). PROCESSING AND CHARACTERIZATION OF INCONEL 718 AND ICNI-5510-718 SUPER ALLOYS FOR SPACE APPLICATIONS. 10.13140/2.1.4607.7760.

13. Gurule N. B.1, Nandurkar K. N. Effect of tool rotation on material removal rate during powder mixed electric discharge machining of die steel, International Journal of Emerging Technology and Advanced Engineering 2 (2012) 328 – 332

14. Y. Liu, H. Chang, W. Zhang, F. Ma, Z. Sha, and S. Zhang, ―A simulation study of debris removal process in ultrasonic vibration assisted electrical discharge machining (EDM) of deep holes,‖ Micromachines, vol. 9, no. 8, 2018.

15. Talla, G. (2016). Powder-mixed Electric Discharge Machining (PMEDM) of Inconel 625 (Doctoral dissertation).

16. B. Jabbaripour, M.H. Sadeghi, M.R. Shabgard, H. Faraji, Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of r-TiAl intermetallic, J. Manuf. Process. 15 (2013) 158–166.

17. Cogun, C., Ozerkan, B., Karacay, T. 2006. An experimental investigation on the effect of powder mixed dielectric on machining performance in electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manu- facture 220 Part B, 220: 1035-1050

18. G. Kucukturk, C. Cogun, A New Method for Machining of Electrically Nonconductive Workpieces Using Electric Discharge Machining Technique, Mach. Sci. Technol. 14 (2010) 189–207.

19. F.L. Zhao, Z.Z. Lu, H. Wang, Z.Q. Qian, Research on effecting mechanism of particles in powder-mixed EDM, Dalian Ligong Daxue Xuebao/Journal Dalian Univ. Technol. 45 (2005) 668–671.

113

20. G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong, K. Mitsui, Accuracy improvement in nanographite powder-suspended dielectric fluid for micro-electrical discharge machining processes, Int. J. Adv. Manuf. Technol. 56 (2011) 143–149. 21. Y.S. Wong, L.C. Lim, I. Rahuman, W.M. Tee, Near-mirror-finish phenomenon in

EDM using powder-mixed dielectric, J. Mater. Process. Technol. 79 (1998) 30–40. 22. H.K. Kansal, S. Singh, P. Kumar, Application of Taguchi method for optimisation

of powder mixed electrical discharge machining, Int. J. Manuf. Technol. Manag. 7 (2005) 329

23. Uno, Y. and Okada, A. Surface generation mechanism in electrical discharge machining with silicon powder mixed fluid.International Journal of Electrical Machining, 2, pp.13–18. 1997.

24. Uno, Y., Okada, A., Hayashi, Y. and Tabuchi, Y. Surface integrity in EDM of aluminum bronze with nickel powder mixed fluid. J Jpn. Soc. Elec. Mach. Eng., 32 (70), pp.24–31. 1998.

25. Tzeng, Y.-F. and Chen, F.-C. Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. Journal of Materials Processing Technology, 170, pp.385–391. 2005.

26. Zhao, W.S., Meng, Q.G. and Wang, Z.L. The application of research on powder mixed EDM in rough machining. Journal of Materials Processing Technology, 129, pp.30-33. 2002.

27. Jeswani, M.L. Effects of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining, Wear, 70, pp.133–139. 1981. 28. Mohri N., Saito N., Higashi M. , Kinoshita N. (1991), A New Process of Finish

Machining on Free Surface by EDM Methods, Annals of the CIRP, 40 (1), pp. 207–210

29. UNO, Y., & OKADA, A. (1997). Surface generation mechanism in electrical discharge machining with silicon powder mixed fluid. International Journal of Electrical Machining, 2, 13-18.

114

30. Y.S. Wong, L.C. Lim, I. Rahuman, W.M. Tee, Near-mirror-finish phenomenon in EDM using powder-mixed dielectric, J. Mater. Process. Technol. 79 (1998) 30–40 31. Long, B. T., Cuong, N., Phan, N. H., Man, N. D., & Janmanee, P. (2014). Effects of

Titanium Powder Concentrations during EDM Machining Efficiency Of Steel SKD61 Using Copper Electrode. International Journal of Advance Foundation And Research In Science & Engineering (IJAFRSE), 1(7), 9-18.

32. Long, B. T., Cuong, N., Phan, N. H., Toan, H. A., & Janmanee, P. (2015). Enhanced material removal rate and surface quality of SKD61 steel in electrical discharge machining with graphite electrode in rough machining. International Journal of Scientific Engineering and Technology, 4, 2.

33. Long, B. T., Cuong, N., Phan, N. H., Toan, H. A., & Janmanee, P. (2015). Enhanced Material Removal Rate and Surface Quality of H13 Steel in Electrical Discharge Machining With Graphite Electrode in Rough Machining. International Journal of Scientific Engineering and Technology, 4(2), 101-106.

34. Le, V. T., Banh, T. L., Tran, X. T., Nguyen, T. H. M., & Le, V. T. (2020). Studying the microhardness on the surface of SKD61 in PMEDM using tungsten carbide powder. International Journal of Modern Physics B, 34(22n24), 2040164.

35. Chakraborty, S., Dey, V., & Ghosh, S. K. (2015). A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precision Engineering, 40, 1-6.

36. Chen, Y. F., & Lin, Y. C. (2009). Surface modifications of Al–Zn–Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric. Journal of Materials Processing Technology, 209(9), 4343-4350.

37. Chen, S. L., Lin, M. H., Huang, G. X., & Wang, C. C. (2014). Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Applied Surface Science, 311, 47-53.

38. Hourmand, M., Farahany, S., Sarhan, A. A., & Noordin, M. Y. (2015). Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg 2 Si metal

115

matrix composite (MMC) for high material removal rate (MRR) and less EWR– RSM approach. The International Journal of Advanced Manufacturing Technology, 77(5-8), 831-838.

39. Gopalakannan, S., Senthilvelan, T., & Ranganathan, S. (2012). Modeling and optimization of EDM process parameters on machining of Al 7075-B4C MMC using RSM. Procedia Engineering, 38, 685-690.

40. Kumar, S. V., & Kumar, M. P. (2015). Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. Journal of Manufacturing Processes, 20, 70-78.

41. Srivastava, A. K. (2020). Assessment of mechanical properties and EDM machinability on Al6063/SiC MMC produced by stir casting. Materials Today: Proceedings, 25, 630-634.

42. D. R. Unune and H. S. Mali, ―Experimental investigation on low-frequency vibration-assisted µ-ED milling of Inconel 718,‖ Mater. Manuf. Process., vol. 33, no. 9, pp. 964–976, 2018.

43. K. T. Hoang and S. H. Yang, ―A study on the effect of different vibration-assisted methods in micro-WEDM,‖ J. Mater. Process. Technol., vol. 213, no. 9, pp. 1616– 1622, 2013.

44. D. Ghiculescu, N. Marinescu, D. Ghiculescu, and S. Nanu, ―Aspects of finite element analysis of microdrilling by ultrasonically aided EDM and related knowledge management,‖ Appl. Mech. Mater., vol. 371, no. August 2013, pp. 215– 219, 2013.

45. Y. S. Liao and H. W. Liang, ―Study of Vibration Assisted Inclined feed Micro- EDM Drilling,‖ Procedia CIRP, vol. 42, no. Isem Xviii, pp. 552–556, 2016.

46. A. Schubert, H. Zeidler, M. H. Oschätzchen, J. Schneider, and M. Hahn, ―cing Micro-EDM using Ultrasonic Vibration and Approaches for Machining of Nonconducting Ceramics,‖ Strojniški Vestn. – J. Mech. Eng., vol. 59, no. 3, pp. 156–164, 2013.

116

47. Erden, A. and S. Bilgin, Role of Impurities in Electric Discharge Machining, in Proceedings of the Twenty-First International Machine Tool Design and Research Conference, J.M. Alexander, Editor. 1981, Macmillan Education UK: London. p. 345-350.

48. Schumacher, B.M., About the Role of Debris in the Gap During Electrical Discharge Machining. CIRP Annals, 1990. 39(1): p. 197-199.

49. Nastasi, R. and P. Koshy, Analysis and performance of slotted tools in electrical discharge

drilling. CIRP Annals-Manufacturing Technology, 2014. 63(1): p. 205-208.

50. Gu, L., L. Li, W. Zhao, and K.P. Rajurkar, Electrical discharge machining of Ti6Al4V with a bundled electrode. International Journal of Machine Tools and Manufacture, 2012. 53(1): p. 100-106.

51. Thesiya, D. and A. Rajurkar, Aluminium powder mixed rotary electric discharge machining (PMEDM) on Inconel 718 AU - Patel, Sagar. Australian Journal of Mechanical Engineering, 2018. 16(1): p. 21-30.

52. Baseri, H. and S. Sadeghian, Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. The International Journal of Advanced Manufacturing Technology, 2016. 83(1): p. 519- 528

53. Y. Liu, H. Chang, W. Zhang, F. Ma, Z. Sha, and S. Zhang, ―Study on Gap Flow Field Simulation in Small Hole Machining of Ultrasonic Assisted EDM,‖ IOP Conf. Ser. Mater. Sci. Eng., vol. 280, no. 1, 2017

54. D. R. Unune, C. K. Nirala, and H. S. Mali, ―Accuracy and quality of micro-holes in vibration assisted micro-electro-discharge drilling of Inconel 718,‖ Meas. J. Int. Meas. Confed., vol. 135, pp. 424–437, 2019.

55. B. C. Khatri, P. P. Rathod, J. B. Valaki, and C. D. Sankhavara, ―Insights into process innovation through ultrasonically agitated concentric flow dielectric streams for dry wire electric discharge machining,‖ Mater. Manuf. Process., vol. 33, no. 13, pp. 1438–1444, 2018

117

56. N. Sabyrov, M. P. Jahan, A. Bilal, and A. Perveen, ―Ultrasonic vibration assisted electro-discharge machining (EDM)-An overview,‖ Materials (Basel)., vol. 12, no. 3, 2019.

57. K. P. Maity and M. Choubey, ―A review on vibration-assisted EDM, micro-EDM and WEDM,‖ Surf. Rev. Lett., vol. 26, no. 5, 2019.

58. T. Ichikawa and W. Natsu, ―Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid,‖ Procedia CIRP, vol. 6, pp. 326–331, 2013

59. Kojima a., Natsu W, Kunieda M. Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann - Manuf Technol 2008;57:203–7

60. M. Goiogana, J. A. Sarasua, and J. M. Ramos, ―Ultrasonic Assisted Electrical Discharge Machining for High Aspect Ratio Blind Holes,‖ Procedia CIRP, vol. 68, no. April, pp. 81–85, 2018.

61. S. Kumar, S. Grover, and R. S. Walia, ―Optimisation strategies in ultrasonic vibration assisted electrical discharge machining: a review,‖ Int. J. Precis. Technol., vol. 7, no. 1, p. 51, 2017.

62. N. Sabyrov, M. P. Jahan, A. Bilal, and A. Perveen, ―Ultrasonic vibration assisted electro-discharge machining (EDM)-An overview,‖ Materials (Basel)., vol. 12, no. 3, 2019.

63. A. S. Todkar, M. S. Sohani, G. S. Kamble, R. B. Nikam, and K. E. Work, ―Effects of Vibration on Electro Discharge Machining Processes,‖ Int. J. Eng. Innov. Technol., vol. 3, no. 1, pp. 270–275, 2013.

64. A. Pandey1 and Shankar Singh, ―Current Research Trends in Micro Electrical Discharge Machining: a Review,‖ Ijitr, vol. 2, no. 1, pp. 717–721, 2014.

65. M. Mia, Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method, Measurement 121 (2018) 249– 260, https://doi.org/10.1016/j.measurement.2018.02.017.

66. G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong, K. Mitsui, Effect of micro- powder suspension and ultrasonic vibration of dielectric fluid in micro- EDM

118

processes—Taguchi approach, Int. J. Mach. Tools Manuf. 49 (12–13) (2009) 1035– 1041,https://doi.org/10.1016/j.ijmachtools.2009.06.014.

119

DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN

1. N. Huu-Phan, B. Tien-Long, L. Quang-Dung, N. Duc-Toan, and T. Muthuramalingam,( 2019) ―Multi-criteria decision making using preferential selection index in titanium based die-sinking PMEDM,‖ J. Korean Soc. Precis. Eng., vol. 36, no. 9, pp. 793–802. – Scopus

2. Nguyen, H. P., Banh, T. L., Muthuramalingam, T., Vu, N. P., Le, Q. D., Hung, L. X., & Nguyen, D. K ,(2020), ―Taguchi Based Process Parameters Optimization in Vibration Assisted Die Sinking Electrical Discharge Machining,‖ Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_81 - Scopus 3. Lê Quang Dũng, Bành Tiến Long, Nguyễn Hữu Tuấn, (2020), Ảnh hưởng của rung

động tần số thấp đến năng suất gia công, lượng mòn điện cực trong gia công xung điện có trộn bột, Tập 56 , số 2 , Đại học Công nghiệp Hà Nội

4. Lê Quang Dũng, Bành Tiến Long, Nguyễn Hữu Phấn, (2020), Nghiên cứu sự ảnh hƣởng của rung động với tần số thấp đặt lên phôi đến chát lƣợng bề mặt trong gia công EDM và PMEDM.Số 3, Tạp chí cơ khí Việt Nam

5. Quang Dung Le, Huu Phan Nguyen, Tien Long Banh and Duc Toan Nguyen (2020),

Comparative study of low-frequency vibrations assigned to a workpiece in EDM and PMEDM, ISSN (online): 1793-6578, International Journal of Modern Physics B, SCIE , Q4- IF= 0.883

6. Quang Dung Le, Huu Phan Nguyen, Tien Long Banh and Duc Toan Nguyen (2020),

Effect of low-frequency vibrations on MRR, EWR and Ra in powder-mixed electrical discharge machining, ISSN (online):1793-6578, International Journal of Modern Physics B, SCIE. Q4- IF= 0.883

Một phần của tài liệu Nghiên cứu quá trình gia công tia lửa điện trong dung dịch có trộn bột titan kết hợp hệ thống rung động tần số thấp trên chi tiết (Trang 124 - 134)

Tải bản đầy đủ (PDF)

(134 trang)