Maltodextrin với DE thấp hơn chứa một tỷ lệ lớn các saccharide chuỗi dài, có thể dẫn đến nứt bề mặt và giảm rào cản oxy. Maltodextrin với DE cao hơn có thể tạo thành các hệ thống tường không thấm oxy và đậm đặc hơn để giữ lại các sắc tố anthocyanin tốt hơn [38]. Maltodextrin là một loại tinh bột thủy phân được sản xuất bằng cách thủy phân một phần tinh bột bằng acid hoặc enzyme thường được sử dụng làm nguyên liệu trong quá trình vi nang của các thành phần thực phẩm [39], [40]. Maltodextrin được coi là tác nhân vi bao tốt bởi vì nó thể hiện độ nhớt thấp ở hàm lượng chất rắn cao và độ hòa tan tốt. Maltodextrin được sử dụng chủ yếu làm chất hỗ trợ trong quá trình sấy phun, sấy khô nước ép trái cây, làm tăng nhiệt độ chuyển thủy tinh, làm giảm độ dính của bột và tạo sự ổn định cho bột. Rõ ràng, chúng có khả năng hình thành ma trận rất cần thiết trong việc hình thành các hệ thống tường [41]. Nó mang lại những ưu điểm có lợi như chi phí tương đối thấp, mùi thơm và hương vị trung tính, độ nhớt thấp ở nồng độ chất rắn cao và bảo vệ tốt các hương vị chống lại quá trình oxy hóa [42]. Tuy nhiên, hạn chế lớn nhất của vật liệu tường này là khả năng nhũ hóa thấp và khả năng lưu giữ biên của các chất bay hơi [43], [44]. Do đó, nó thường được sử dụng trong hỗn hợp với các vật liệu tường khác. Các tác nhân chất mang có thể được kết hợp để có được một ma trận hiệu quả và ổn định hơn [42].
Ảnh hưởng của tỷ lệ chất mang và nhiệt độ sấy phun lên hàm lượng anthocyanin tổng từ đài hoa bụp giấm được thể hiện trên đồ thị Hình 4.1. Kết quả cho thấy rằng nhiệt độ sấy phun và tỷ lệ chất mang ảnh hưởng đáng kể lên hàm lượng anthocyanin tổng. Tỷ lệ chất mang tăng dẫn đến sự giảm đáng kể về hàm lượng anthocyanin tổng. Khi tăng tỷ lệ chất mang từ 1:50 đến 1:100 thì hàm lượng anthocyanin bề mặt giảm từ khoảng 75.6395.81 đến 56.4666.98 (mg/L) tương ứng.
Theo Do and Nguyen (2018) báo cáo rằng bằng cách tăng nhiệt độ không khí đầu vào, quá trình bay hơi đã được đẩy nhanh; một vật liệu tường mịn và ổn định hơn đã được hình thành, hoạt động như một ma trận bảo vệ lõi anthocyanin khỏi quá trình xử lý nhiệt. Tuy nhiên, khi nhiệt độ tăng quá cao, TAC đã giảm đáng kể [45].
Hình 4.1 Ảnh hưởng của nhiệt độ sấy phun (C) và tỷ lệ anthocyanin:maltodextrin (w/w) lên hàm lượng anthocyanin tổng (TAC) (mg/g DW) của bột bụp giấm sấy phun
Sự tương tác tiêu cực giữa TAC và nhiệt độ không khí đầu vào đã được chứng minh bởi một số báo cáo. Theo báo cáo Tonon, Brabet and Hubinger (2008, 2010) nhiệt độ không khí đầu vào ảnh hưởng đáng kể đến TAC của bột Açai (Euterpe oleracea Mart.) [46], [47].
Một báo cáo tương tự Ersus and Yurdagel (2007) trong quá trình vi nang của anthocyanin được chiết xuất từ cà rốt đen (Daucuscarota L.) bằng ba nhiệt độ không khí đầu vào khác nhau (160°C, 180°C và 200°C) [48].
Dịch chiết anthocyanin từ gạo nếp đen (black glutinous rice) có hàm lượng TAC từ các viên nang siêu nhỏ được tạo ra bằng cách sấy phun nằm trong khoảng 617.29– 844.38 mg cyanidin-3-glucoside/100 g DW [49].
Tăng nhiệt độ không khí đầu vào (140°C, 160°C và 180°C) dẫn đến giảm TAC vì anthocyanin nhạy cảm với nhiệt [50].
Việc tăng giá trị DE từ 10 lên 20 dẫn đến việc tăng tỷ lệ các polysaccharide chuỗi ngắn, tạo điều kiện cho sự hình thành của một bức tường vi nang với hệ thống không thấm oxy hơn [51]. Hệ thống này có thể làm giảm các tác động tiêu cực từ nhiệt và oxy. Tuy nhiên, giá trị DE cao (DE 30) cho thấy kết quả tiêu cực lên TAC.
0 20 40 60 80 100 120 1:50 1:60 1:70 1:80 1:90 1:100 T AC (mg /L ) ACN:MD (w/w) 150°C 160°C 170°C
Ersus and Yurdagel (2007) đã báo cáo rằng maltodextrin DE cao hơn nhạy cảm hơn với nhiệt độ cao hơn do chứa chuỗi ngắn hơn. Phản ứng oxy hóa của aldehyde khi ở cấu trúc mở vòng của các phân tử có thể dẫn đến biến dạng cấu trúc trong quá trình phun [48]. Điều này sẽ làm giảm sự bảo vệ anthocyanin.
Nayak and Rastogi (2010) đã báo cáo rằng giá trị DE của maltodextrin tăng từ DE 21 đến DE 33 dẫn đến giảm hàm lượng anthocyanin và gây ra sự tăng cường độ dày của tường dẫn đến việc làm khô chậm hơn, so với cùng nhiệt độ sấy [52].
Hình 4.2 Ảnh hưởng của nhiệt độ sấy phun (C) và tỷ lệ anthocyanin:maltodextrin (w/w) lên hàm lượng anthocyanin bề mặt (SAC) (mg/g DW) của bột bụp giấm sấy phun
Ảnh hưởng của tỷ lệ chất mang và nhiệt độ sấy phun lên hàm lượng anthocyanin bề mặt từ đài hoa bụp giấm được thể hiện trên Hình 4.2. Kết quả cho thấy rằng nhiệt độ sấy phun và tỷ lệ chất mang ảnh hưởng đáng kể lên hàm lượng anthocyanin bề mặt. Tỷ lệ chất mang tăng dẫn đến sự giảm đáng kể về hàm lượng anthocyanin bề mặt. Khi tăng tỷ lệ chất mang từ 1:50 đến 1:100 thì hàm lượng anthocyanin bề mặt giảm từ khoảng 22.3226.13 đến 5.258.57 (mg/L) tương ứng.
SAC là một lượng anthocyanin không nằm bên trong thành vi nang và vẫn còn trên bề mặt của vi nang. Do đó, SAC thấp hơn cho thấy đặc tính tốt hơn của vi nang [49]. 0 5 10 15 20 25 30 1:50 1:60 1:70 1:80 1:90 1:100 S AC (mg /L ) ACN:MD (w/w) 150°C 160°C 170°C
SAC giảm khi nhiệt độ không khí đầu vào được tăng lên. SAC thấp nhất (24.69 ± 4.66 mg/100 g DW) được quan sát thấy ở 180°C. Kết quả cho thấy việc tăng nhiệt độ không khí đầu vào làm tăng hiệu quả vi bao. Hiệu suất vi bao cao nhất (96.72 ± 0.61%) được quan sát ở 180°C, khi hầu hết anthocyanin bị nhốt vào cấu trúc của ma trận maltodextrin [53]
Do đó, SAC thấp hơn cho thấy đặc tính tốt hơn của vi nang. Đối với sấy phun, tiếp xúc nhiệt ảnh hưởng tiêu cực đến anthocyanin được giữ lại trong các viên nang siêu nhỏ. Tăng nhiệt độ không khí đầu vào (140, 160 và 180°C) gây ra giảm mạnh SAC [49].
Ảnh hưởng tiêu cực thu được từ các viên nang SAC bên ngoài phụ thuộc vào một lượng nhóm aldehyde được tăng lên bởi giá trị DE. Do đó, một vật liệu tường có giá trị DE cao (> DE 20) có thể không phù hợp với quá trình vi nang anthocyanin [49].