Chứng minh các đẳng thức về vectơ

Một phần của tài liệu tu_chon_nang_cao_kop_11 (Trang 36 - 37)

M D= N E Chứng minh rằng N luôn song song với một mặt phẳng cố định.

1. Chứng minh các đẳng thức về vectơ

* Sử dụng quy tắc ba điểm, quy tắc hình bình hành, quy tắc hình hộp để biến đổi vế này thành vế kia

Bài 1: Cho hình chóp S.ABCD có đáy ABCD là là một hình chữ nhật. Chứng minh rằng:

a. SA SC SB SDuur uuur uur uuur+ = + b. SAuur2 +SCuuur2 =SBuur2+SDuuur2

Giải

a. Gọi O là tâm của hình chữ nhật. Vì OA – OC nên: SA SCuur uuur+ =2SOuuur (1)

Vì OB = OD nên SB SDuur uuur+ =2SOuuur (2)

So sánh (1) và (2) ta suy ra SA SC SB SDuur uuur uur uuur+ = + b. Ta có:

2 2

2

( ) 2 .

SA= SO OA+ =SO +OA + SO OA

uur uuur uuur uuur uuur uuuruuur Mà OA OCuuur uuur r+ =0 nên

2 2 2 2 2

2

SA +SC = SO +OA +OC

uur uuur uuur uuur uuur

Tương tự ta có: SBuur2 +uuurSD2 =2uuurSO2 +OBuuur2+ODuuur2 Vì ABCD là hình chữ nhật nên ta có

OAuuur = OBuuur = OCuuur = ODuuur

Từ đó suy ra SAuur2+SCuuur2 =SBuur2+SDuuur2

Bài 2: Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD, G là trung điểm của đoạn MN. Chứng minh rằng:

a. uuur uuur uuur uuurAD BC+ =AC BD+ =2MNuuuur b. GA GB GC GDuuur uuur uuur uuur r+ + + =0

c. uuur uuur uuur uuurPA PB PC PD+ + + =4PGuuur với P là một điểm bất kì.

Giải:

a. Ta có: MNuuuur uuur uuur uuur=MA AD DN+ + và

MN =MB BC CN+ +

uuuur uuur uuur uuur Suy ra:

2MNuuuur=(MA MBuuur uuur+ )+uuur uuurAD BC+ +(DN CNuuur uuur+ ) Vì MA MB DN CNuuur uuur uuur uuur r+ = + =0 nên

2MNuuuur uuur uuur=AD BC+

Hình 6.2 O D C B A S D C B G N M A

Ta suy ra: uuur uuur uuur uuurAD BC+ = AC BD+ =2MNuuuur

b. Vì GA GBuuur uuur+ =2GMuuuur uuur uuur, GC GD+ =2GNuuur, GM GNuuuur uuur r+ =0 nên GA GB GCuuur uuur uuur r+ + =0 c. Với điểm P bất kì, từ kết quả trên ta có:

(uuur uuurPA PG− ) (+ uuur uuurPB PG− ) (+ PC PGuuur uuur− ) (+ PD PGuuur uuur− ) 0=r Do đó: PA PB PC PDuuur uuur uuur uuur+ + + =4PGuuur

Một phần của tài liệu tu_chon_nang_cao_kop_11 (Trang 36 - 37)

Tải bản đầy đủ (DOC)

(44 trang)
w