LASER đơn mode

Một phần của tài liệu ghép kênh quang phân chia theo thời gian otdm (Trang 44)

Các LASER này chỉ phát ánh sáng ở một tần số hay một mode dọc. Laser đơn mode có 2 ưu điểm so với laser đa mode là có độ rộng phổ rất hẹp nên giảm được sự tán sắc màu trong sợi quang và tạp phân mode. Vì vậy các laser đơn mode được dùng làm nguồn phát quang nhất là trong hệ thống kết hợp (Coherent).

Để có được laser đơn mode đạt tỉ lệ nén biên độ giữa mode chính và các mode bên SMSR (Side Mode Suppession Ratio) rất lớn, khi đó trong nguồn quang hầu như chỉ còn tồn tại mode dọc chính. Laser có khoảng cách giữa mode dọc khoảng (≈1nm) nhỏ hơn rất nhiều so với đường cong khuếch đại, do đó công suất của các mode sẽ rất khác nhau, trong khi đó suy hao truyền dẫn giữa các mode lại không đáng kể. Tỉ số nén mode bên được đưa ra để xác định chế độ hoạt động của laser, nó được xác định bằng tỉ số công suất của mode chính P0 và công suất P1 của mode cạnh mode chính.

Chỉ tiêu chất lượng của LD đơn mode được đánh giá bởi đại lượng gọi là tỉ số dập mode sau: 1 0 P P SMSR= .

Về mắt cấu trúc có nhiều loại laser đơn mode, trong đó phổ biến là 2 loại sau: laser phân bố phản hồi DFB và laser dùng hộp cộng hưởng liên kết.

a. Laser DFB (Distribued Feed Back)

Ở laser này có sự phản hồi quang được thực hiện không phải ở 2 gương mà tiến hành trên cả chiều dài vùng hoạt tính của hộp cộng hưởng, gọi là sự phản hồi phân bố. Để tạo ra sự phản hồi phân bố, người ta tạo ra các bộ phản xạ cách tử có tính chọn

lọc tần số gắn sát mặt của lớp hoạt tính của LASER. Đây là một lớp điện môi ống dẫn sóng làm từ vật liệu như lớp vỏ của chuyển tiếp có dạng gấp nếp để tạo ra chiết suất thay đổi chu kì dọc theo chiều dài. Sóng truyền dọc theo bước sóng nhất định gọi là bước sóng Bragg theo điều kiện Bragg như sau:

c e B l k n 2 = λ (3.5)

Ở đây: λB là bước sóng Bragg

ne là chiết suất hiệu dụng của mode sóng k là bậc nhiễu xạ Bragg

lc là chu kì cách tử

Một dạng biến thế của laser DFB là laser phản xạ phân tán Bragg, DBR (Distributed Bragg Reflector) laser. Không giống như công nghệ được sử dụng trong laser DFB, trong laser DBR cáp cách tử chiều dài ngắn đóng vai trò bộ phản xạ chọn lọc tần số thay thế cho buồng cộng hưởng Fabry- Perot. Cấu trúc cách tử nằm ở hai bên vùng hoạt tính có tác dụng như hai gương phản xạ với các bước sóng thoả mãn điều kiện phản xa. Như vậy sẽ có nhiều mode trong vùng hoạt tính nhưng chỉ có một bước sóng được phản xạ trở lại và được khuếch đại.

Cũng giống như laser DFB, laser DBR có hệ số nén mode rất cao, trên thị trường hiện nay tỉ số SMSR có thể lên tới30÷35dB. Dòng điện ngưỡng của hai loại laser này chỉ cỡ 20mA và độ rộng vạch phổ hết sức hẹp, nhỏ hơn 0.5nm. Do đó các tuyến cự ly xa, yêu cầu tốc độ cao thường sử dụng hai loại diode laser trên.

b. Laser đơn mode cộng hưởng liên kết

Một phương pháp đơn giản để chế tạo laser có thể điều chỉnh được bước sóng ánh sáng ra là sử dụng bộ chọn lọc bước sóng ngoài sẽ chọn lọc một mode sóng Fabry- perot duy nhất trong số các mode Fabry- Perot cùng tồn tại của laser bằng cách điều chính các tham số của bộ lọc. Điều chỉnh bộ lọc sẽ điều chỉnh được bước sóng chọn cho tới khi bước sóng chọn phù hợp với bước sóng của một mode sóng Fabry- Perot nào đó.

Chương III: Nguồn phát quang

Có rất nhiều cấu trúc của bộ lọc ngoài được áp dụng nhưng chủ yếu vẫn là phương pháp cách tử nhiễu xạ có cấu trúc như hình vẽ:

Hình 3.6. Cấu trúc của bộ lọc ngoài

Một trong những mặt cuối của laser được phủ một lớp chống phản xạ, chùm tia sáng đi ra từ mặt này được trực chuẩn khi tới cách tử nhiễu xạ. Cách tử nhiễu xạ đóng vai trò là gương phản xạ và bộ lọc bước sóng hẹp. Mọi thay đổi của cách tử nhiễu xạ đều dẫn đến thay đổi được sóng lựa chọn, khi quay góc nghiêng của cách tử ta sẽ điều chỉnh được một khoảng rộng bước sóng, khi thay đổi vị trí cách tử theo chiều dọc thì bước sóng chọn sẽ được vi chỉnh. Hiện nay, với công nghệ này giới hạn điều chỉnh được bước sóng có thể đạt được trong khoảng 50÷240nm tại bước sóng

m

µ 55 .

1 .

Laser dùng bộ chọn lọc bước sóng ngoài tuy có nhiều ưu điểm nhưng việc điều chỉnh cách tử đạt được độ chính xác cao là rất khó khăn. Cũng dựa vào sự chọn lọc và phản xạ của cách tử nhiễu xạ, thay thế việc phải thay đổi và di chuyển cách tử người ta dùng mảng hai chiều các sọc hoạt tính kết hợp với cách tử nhiễu xạ cố định được gọi là laser Magic (Multistripe Array Grating Intergrated Cavity). Các sọc hoạt tính này có thể được lựa chọn và ghép với sọc hoạt tính trung tâm ở chỉ một bước sóng. Số lượng bước sóng có thể lựa chọn phụ thuộc vào số sọc hoạt tính, với mô hình có 15 sọc hoạt tính thì khoảng thay đổi giữa các mode được chọn là 1.89nm.

3.4.3. Các đặc trưng của laser a) Đặc tính phổ của diode laser

Trong trong diode laser chỉ một số sóng ánh sáng có bước sóng nhất định mới có thể lan truyền được trong buồng cộng hưởng. Điều kiện để truyền lan ánh sáng là sóng phản xạ và sóng tới phải đồng pha với nhau. Điều kiện truyền lan của sóng là pha của 2 sóng tại x=0 phải bằng nhau, nghĩa là:

( 2 ) 1 exp j − β1L = (3.6) Do vậy: 2β1L=2ΠN (N là số tự nhiên) (3.7) Vì 0 1 2 λ β = Πn nên L N n 2 0 = λ (3.8)

L: là chiều dài hộp cộng hưởng n: là chiết suất vùng hoạt tính.

Như vậy ta thấy rằng laser chỉ khuếch đại những bước sóng thoả mãn điều kiện λ0 ở trên. Mỗi bước sóng đó gọi là một mode dọc hay đơn giản là mode. Tập hợp

đỉnh của các mode này sẽ tạo thành đường bao phổ bức xạ của diode laser. Từ biểu thức tính λ0 ta sẽ tìm được khoảng cách về mặt tần số giữa hai mode liên tiếp nhau.

Phổ bức xạ của laser phụ thuộc rất nhiều vào dòng điện định thiên. Khi laser hoạt động ở chế độ dưới ngưỡng, bức xạ tự phát chiếm ưu thế và do đó độ rộng vạch phổ giống với LED. Tuy nhiên, nếu diode laser hoạt động ở chế độ lớn hơn chế độ ngưỡng thì độ rộng vạch phổ sẽ giảm xuống. Vạch phổ hẹp lại do tác động của buồng cộng hưởng và khuếch đại theo hàm mũ những mode đạt tới mức ngưỡng, đồng thời bỏ qua tất cả các mode khác. 1 5 . 0 λ Ánh sáng ra 0 λ độ rộng vạch phổ P (a) (b) (adsbygoogle = window.adsbygoogle || []).push({});

Chương III: Nguồn phát quang

Hình 3.7. Đồ thị phổ bức xạ của LASER

Trong thực tế, các mode bên cạnh gần với mode cơ bản cũng được khuyến khích đại đáng kể do đó đầu ra bao gồm một số mode phụ thuộc vào đường cong khuếch đại. Tập hợp các mode này ta sẽ có một đường bao của vạch phổ và có thể xấp xỉ đường bao này bằng phân số Gauss:

( ) ( ) ( )        − − = 2 2 0 0 2 exp . δ ω ω ω ω g g (3.9)

Trong đó: δ là độ rộng vạch phổ của bức xạ laser.

Kết quả trên cùng với phổ vạch làm cho phổ bức xạ có dạng như hình trên. Độ rộng vạch phổ đối với loại diode laser tiếp xúc sọc khá nhỏ chỉ khoảng 2 đến 5nm.

Nếu diode laser hoạt động với dòng điện cao hơn rất nhiều so với mức ngưỡng, thì đường bao khuếch đại có thể dịch đi một chút để một trong những mode gần với bước sóng danh định chiếm ưu thế. Hiệu ứng này gọi là mode- hopping và nó làm gãy đường đặc tính công suất dòng điện. Nếu điều chế laser bằng cách biến đổi dòng điện điều khiển, mode- hopping có thể gây tác động xấu đến tuyến cáp tốc độ cao. Nếu tuyến đang hoạt động ở mức tán sắc bước sóng bằng 0 thì bất kỳ chirp của xung ánh sáng nào cũng sẽ làm biến đổi bước sóng hoạt động do đó gây ra hiện tượng giãn xung. Vì vậy, diode laser tiếp xúc sọc thông thường không được sử dụng trong các tuyến tốc độ cao. λ 1 5 . 0 độ rộng vạch phổ λ Ánh sáng ra (d) (c)

Chương IV: Nguồn thu quang

CHƯƠNG IV. NGUỒN THU QUANG

4.1. Khái quát về nguồn thu quang

Nguồn quang sử dụng trong thông tin sợi quang là diode bán dẫn quang gọi là photo diode. Có hai loại photo diode được sử dụng phổ biến là photo diode PIN và và photo diode thác APD. Photo diode có nhiệm vụ thu và biến đổi tín hiệu quang từ máy phát truyền dọc sợi quang về dạng tín hiệu điện.

Photo diode dùng trong hệ thống thông tin quang cần đáp ứng những yêu cầu sau:

- Có độ nhậy cao

- Đáp ứng thời gian nhanh - Tạp âm thấp

- Độ tin cậy cao - Giá thành hợp lý

- Kích thước phù hợp với kích thước lõi sợi quang.

Photo diode làm việc dựa trên hiệu ứng quang điện của lớp chuyển tiếp bán dẫn P-N khi được cấp điên áp ngược (điện áp âm đặt lên lớp P).

4.2. Photo diode P-N

4.2.1. Cấu tạo và nguyên tắc tách sóng quang của photo diode P-N

Photo diode P-N được cấu tạo từ một chuyển tiếp P-N từ bán dẫn như Si và được cấp một thiên áp ngược (hình 4.1)

Do sự khuếch tán của điện tử và lỗ trống nên giữa hai lớp P-N của bán dẫn hình thành một lớp chuyển tiếp P- N có rất ít điện tích tự do được gọi là lớp nghèo với độ rộng là l và có một điện trường tiếp xúc Etx. Ở trạng thái cân bằng, điện trường này ngăn cản sự khuếch tán tiếp theo của các điện tử và lỗ trống qua lớp nghèo. Do đó trong diode không có dòng điện chạy qua. Sự tách sóng quang của photo diode được tiến hành như sau:

Khi đặt một điện áp ngược và không có ánh sáng chiếu vào, do điện áp tạo điện trường ngoài cùng dấu với điện trường tiếp xúc Etx dẫn đến làm tăng độ rộng của lớp nghèo l do đó điện trường tổng trên lớp tiếp xúc ngăn cản các hạt dẫn đa số đi qua nó,

nên trong diode không có dòng điện chạy qua. Tuy nhiên do trong bán dẫn tồn tại các hạt mang điện thiểu số mang điện và chúng dịch chuyển được qua lớp nghèo dưới tác dụng của điện trường tiếp xúc nên trong diode tồn tại một dòng điện ngược rất nhỏ gọi là dòng tối It (cỡ 0,1-1nA )

Khi có ánh sáng với năng lượng của photon E=hvEG chiếu vào diode từ lớp

P, trong các lớp P- N và nghèo khi hấp thụ năng lượng của photon các điện tử dịch chuyển lên vùng dẫn và tạo ra các lỗ trống ở vùng hoá trị. Kết quả là trong các lớp bán dẫn P và N đầu tiên sẽ khuếch tán đến lớp nghèo, rồi chuyển động trôi qua lớp này dưới tác dụng của điện trường tiếp xúc theo hai hướng ngược nhau để đi đến các cực của anot và catot của diode. Còn các điện tử và lỗ trống tạo ra trong lớp nghèo thì chuyển động kéo theo qua nó để đi tới 2 cực của diode.

Kết quả là trong diode xuất hiện một dòng điện ngược chạy qua gọi là dòng điện Ip. Dòng quang điện của photo diode có giá trị tỷ lệ với công suất quang chiếu vào theo biểu thức sau:

t p RP

I = (4.1)

Trong đó: R (A/W hayµAw) gọi là độ nhạy hay đáp ứng của photo diode. Từ biểu thức trên ta thấy quy luật dòng quang điện của photo diode lặp lại đúng quy luật của ánh sáng chiếu vào, rõ ràng là photo đã làm được nhiệm vụ tách sóng tín hiệu quang để chuyển về dạng tín hiệu điện.

4.1.3. Các đặc tính kỹ thuật của photo diode P- N a. Độ nhạy R (adsbygoogle = window.adsbygoogle || []).push({});

Độ nhạy của photo diode được biểu diễn qua hiệu suất lượng tử η của nó theo

biểu thức: 24 , 1 ηλ η = = hv e R (4.2)

Ở đây: e=1,6.10-19C là điện tích của điện tử

( )m v c µ λ =

b. Hiệu suất lượng tử( )η

Chương IV: Nguồn thu quang

(4.3) Do hiệu suất lượng tử của photo diode được xác định qua hệ số hấp thụ ánh sáng mà hệ số hấp thụ ánh sáng của photo diode lại phụ thuộc vào bước sóng, nên cuối cùng hiệu suất lượng tử η và độ nhạy R của photo diode cũng là hàm của bước sóng .

Hình 4.1. Đường cong độ nhạy R và hiệu suất lượng tử η

Hình 4.1 biểu diễn các đường cong độ nhạy R và hiệu suất lượng tửη phu thuộc

vào bước sóng của các chất bán dẫn dung chế tạo photo diode như Si, Ge và InGaAs. Từ đồ thị ta thấy mỗi photo diode chỉ làm việc trong vùngλ <λc. Bước sóngλcgọi là

bước sóng cắt. Tại vùngλ >λc độ nhạy của photo diodeλ=0. Khi đó ánh sáng chiếu vào cóλ >λ0 ứng với mức năng lượng của photon e=hv<EG nên không đủ để kích

các điện tử lên vùng dẫn, nên trong diode không tạo ra các cặp điện tử và lỗ trống, kết quả là không có dòng quang điện chạy qua diode.

c. Đáp ứng thời gian của photo diode P-N

Từ đồ thị hình 4.2 ta thấy photo diode làm từ Si làm việc thích hợp trong vùng

µ λ <

làm từ InGaAs hoặc Ge. Tuy nhiên do Ge có tạp âm lớn nên trong thực tế nó ít được sử dụng làm bộ thu quang.

Đáp ứng thời gian của photo diode chỉ mức độ phản ứng của diode với ánh sáng chiếu vào nó hay biểu thị tính quán tính của diode. Đáp ứng thời gian của photo diode được quyết định bởi các yếu tố sau:

Thời gian dịch chuyển của dòng điện khuếch tán của hạt dẫn ngoài vùng trôi (trong lớp P và lớp N) của diode.

Thời gian dịch chuyển của dòng điện trôi của các hạt dẫn qua lớp nghèo trong diode.

Vì tốc độ trôi của hạt dẫn trong lớp nghèo dưới điện trường tiếp xúc lớn hơn nhiều tốc độ dịch chuyển của dòng điện khuếch tán trong hai vùng P và N, nên thời gian dịch chuyển của dòng điện khuếch tán ảnh hưởng đến đáp ứng thời gian của photo diode P- N. Vì vậy để giảm thời gian khuếch tán, tức giảm thời gian đáp ứng, photo diode được chế tạo với hai vùng P và N khá mỏng. Ngoài ra để tăng hiệu suất lượng tử tức tăng số cặp điện từ và lỗ trống được tạo ra trong photo diode, thì lớp nghèo có độ dày càng lớn càng tốt, như vậy lại làm tăng đáp ứng thời gian của diode. Như vậy photo diode P- N có hai nhược điểm cơ bản là hiệu suất lượng tử thấp do độ rộng lớp nghèo nhỏ và đáp ứng thời gian lớn do dòngkhuếch tán lớn, nên trong thực tế kỹ thuật nó ít được sử dụng làm bộ thu quang.

4.3. Photo diode PIN

4.3.1. Cấu tạo và nguyên lý làm việc

Photo diode PIN được cấu tạo từ bán dẫn loại Si hay InGaAs gồm 3 lớp là P, N và lớp giữa I (I là chất tinh khiết cao ôm- Instrinsic). Tại hai lớp P và N có gắn lớp tiếp xúc kim loại để tạo thành các điện cực là anôt và catot. Nhờ có thêm vùng bán dẫn tinh khiết I nên điện trường do điện áp đặt từ ngoài lên vùng này có cường độ trường khá lớn, vì vậy tăng được tốc độ trôi của dòng điện hạt dẫn qua lớp nghèo lên nhiều lần so với photo diode P-N.

P

I

N Thiên áp

Photon tới Điện trường

+

Chương IV: Nguồn thu quang

Hình 4.2. Cấu tạo của photo diode quang (adsbygoogle = window.adsbygoogle || []).push({});

Ngoài ra 2 lớp P và N được chế tạo rất mỏng, để cho các cặp điện tử và lỗ trống

Một phần của tài liệu ghép kênh quang phân chia theo thời gian otdm (Trang 44)