II/ PHẦN RIÊNG (3,0điểm) A/ Chương trình chuẩn:
B/ Chương trình nâng cao: Câu IV.b : (2,0điểm)
Câu IV.b : (2,0điểm)
Trong không gian Oxyz, Cho điểm I(1;1;1) và đường thẳng d:
2 44 4 3 2 = − + = − + = − x t y t z t . 1/ Xác định toạ độ hình chiếu vuông góc H của I trên đường thẳng d . 2/ Viết pt mặt cầu (S) có tâm I và cắt d tại hai điểm A,B sao cho AB=16
Câu V.b : (1,0điểm) Tìm số phức z thỏa mãn hệ: 1 1 3 1 2 − = − − = + z z i z i i ĐỀ 67
I/ PHẦN DÀNH CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I: (3,0điểm) Câu I: (3,0điểm)
1/ Tìm m để đồ thị hàm số y=x3+3x2+mx+1 cắt đường thẳng y=1 tại ba điểm phân biệt C(0;1) ,D , E. Tìm m để tiếp tuyến với đồ thị tại hai điểm D và E vuông góc với nhau .
2/ Khảo sát và vẽ đồ thị (C) của hàm số ở câu 1/ khi m= 0.
Câu II: (3,0điểm)
1/ Giải phương trình: 2 3
3 2 3 2
log x−log (8 ).logx x+log x <0
2/ Tính tích phân : I = ( cos ).sin
0
π
+
∫ e x x xdx
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x4−2x2+3
trên [-3;2]
Câu III: (1,0điểm)
Một thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.
1/ Tính diện tích xung quanh và diện tích toàn phần của hình nón. 2/ Tính thể tích của khối nón tương ứng.
II/ PHẦN RIÊNG (3,0 điểm)A/ Chương trình chuẩn: A/ Chương trình chuẩn: Câu IV.a : (2,0điểm)
Trong không gian Oxyz, cho đường thẳng d:
1 22 2 3 = + = − = x t y t z t và mp (P) :2x-y-2z+1 = 0 .
1/ Tìm các điểm thuộc đường thẳng d sao cho khoảng cách từ điểm đó đến mp (P) bằng 1 2/ Gọi K là điểm đối xứng của I(2;-1;3) qua đường thẳng d . Xác định toạ độ K.
Câu V.a : (1,0điểm)
Giải phương trình sau trên tập số phức: z4 – 2z2 – 8 = 0 .
B/ Chương trình nâng cao:Câu IV.b : (2,0điểm) Câu IV.b : (2,0điểm)
Trong không gian Oxyz, cho hai đường thẳng : (d1): 2−2= 3−3= +54 − x y z , (d2): 3+1= −24= −14 − − x y z .
1/ Viết phương trình đường vuông góc chung d của d1 và d2 .
2/ Tính toạ độ các giao điểm H , K của d với d1 và d2. Viết phương trình mặt cầu nhận HK làm
đường kính.
Câu V.b : (1,0điểm)
Tính thể tích vật thể tròn xoay do hình (H) được giới hạn bỡi các đường sau :
21 1 0; 1 ; 0 ; 4 = = = = − x x y y
x khi nó quay xung quanh trục Ox.
ĐỀ 68
I/ PHẦN DÀNH CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I: (3,0điểm) Câu I: (3,0điểm) 1/ Khảo sát và vẽ đồ thị (C) của hàm số: =1+2 − x y x .
2/ Tìm điểm M trên đồ thị (C) sao cho khoảng cách từ nó đến tiệm cận đứng và ngang bằng nhau.
Câu II: (3,0điểm)
1/ Giải phương trình : 4x+1+2x+4 =2x+2+16 2/ Tìm nguyên hàm F(x) của hàm số : f(x) 3 2 2 3 3 5 ( 1) − + − = − x x x x biết rằng F(0) = -12.
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y= +x 2−x
Câu III: (1,0điểm)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB bằng α .
Tính diện tích xung quanh của hình chóp và chứng minh đường cao của hình chóp bằng
2cot 1 cot 1
2 2
α −
a
II/ PHẦN RIÊNG (3,0 điểm)A/ Chương trình chuẩn: A/ Chương trình chuẩn: Câu IV.a : (2,0điểm)
Cho hai điểm M(1;2;-2) và N(2;0;-2).
1)Viết phương trình tổng quát của mặt phẳng đi qua M,N và lần lượt vuông góc với các mặt phẳng toạ độ.
2)Viết phương trình tổng quát của mặt phẳng ( )α đi qua M,N và vuông góc với mặt phẳng 3x+y+2z-1 = 0 .
Câu V.a : (1,0điểm)
Tính thể tích vật thể tròn xoay sinh ra do hình phẳng giới hạn bỡi đồ thị (C): =1+2 −
x y
x , trục hoành và đường thẳng x = -1 khi nó quay xung quanh trục Ox .
B/ Chương trình nâng cao :Câu IV.b : (2,0điểm) Câu IV.b : (2,0điểm)
1) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng đường cao và bằng a. Tíh khoảng cách giữa hai đường thẳng SC và AB.
2) Trong không gian với hệ toạ độ Đề Các Oxyz, cho đường thẳng (∆) có phương trình
1 2
2 1 3
− = − =− −
x y z
và mặt phẳng (Q) đi qua điểm M(1;1;1) và có véctơ pháp tuyến nr=(2; 1; 2).− − Tìm toạ độ các điểm thuộc (∆) sao cho khoảng cách từ mỗi điểm đó đến mp(Q) bằng 1.
Câu V.b : (1,0điểm)
Cho (Cm) là đồ thị của hàm số y =x2−2xx m++ +1 2
Định m để (Cm) có cực trị .Viết phương trình đường thẳng đi qua hai điểm cực trị.
ĐỀ 69
I/ PHẦN DÀNH CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I: (3,0điểm) Câu I: (3,0điểm)
1/ Khảo sát và vẽ đồ thị (C) của hàm số :y= x3 +3x2
2/ Tìm tất cả các điểm trên trục hoành mà từ đó kẽ được đúng ba tiếp tuyến với đồ thị(C), trong đó có hai tiếp tuyến vuông góc với nhau.
Câu II: (3,0điểm)
1/ Giải bất phương trình: 1 2 1 1 1 3 12 3 3 ÷ ÷ + + < x x . 2/ Tìm một nguyên hàm của hàm số y = f(x) = 22 1 2 + + + − x x
x x , biết đồ thị của nguyên hàm đó đi qua điểm M(2 ; -2ln2) 3/ Tìm a, b (b > 0) để đồ thị của hàm số : 2 (2 1) 1 2 − − = − − a x y
x b b có các đường tiệm cận cùng đi qua I (2 ; 3).
Câu III: (1,0điểm)
Cho tứ diện đều có cạnh là a.
1/ Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện.
2/ Tính diện tích mặt cầu và thể tích của khối cầu tương ứng
II/ PHẦN RIÊNG (3,0 điểm)A/ Chương trình chuẩn: A/ Chương trình chuẩn: Câu IV.a : (2,0điểm)
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng ( )α :x+z+2 = 0 và đường thẳng d:
1 3 1 1 2 2 − = − = + − x y z . 1/ Tính góc nhọn tạo bởi d và ( )α .
2/ Viết phương trình đường thẳng ( )∆ là hình chiếu vuông góc của d trên ( )α .
Câu V.a : (1,0điểm)
Tính diện tích hình phẳng (H) giới hạn bỡi các đường: y=x4+4vaøy= −5x2.
B/ Chương trình nâng cao :Câu IV.b : (2,0điểm) Câu IV.b : (2,0điểm)
Trong không gian Oxyz , cho mặt cầu (S) : x2+y2+ −z2 2x−4y−6z−67 0= , mp (P):5x+2y+2z-7= 0 và đường thẳng d: 1 1 2 13 = − + = + = + x t y t z t
1/ Viết phương trình mặt phẳng chứa d và tiếp xúc với (S) . 2/ Viết phương trình hính chiếu vuông góc của d trên mp (P) .
Câu V.b : (1,0điểm)
Tìm diện tích hình phẳng giới hạn bỡi đồ thị của hàm số y= x2−4x+3 và đường thẳng y = - x + 3 .
ĐỀ 70
I/ PHẦN DÀNH CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I: (3,0điểm) Câu I: (3,0điểm)
1/ Chứng minh rằng đồ thị hàm số y = f(x)= -x4+2mx2-2m+1 luôn đi qua hai điểm cố định A,B . Tìm m để các tiếp tuyến với đồ thị tại A và B vuông góc với nhau
2/ Khảo sát và vẽ đồ thị (C) của hàm số :y= f(x) khi m = ½.
Câu II: (3,0điểm)
1/ Giải phương trình: (2− 3) (x+ +2 3)x=4x.
2/ Cho hàm số : 1 3 2 1
( 1) 3( 2)
3 3
= − − + − +
y x m x m x . Tìm m để hàm số có điểm cực đại, cực tiểu x1, x2 thỏa mãn x1 + 2x2 – 1 = 0 .
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : 2 2 sin 2 2 cos + = + x y x
Câu III: (1,0điểm)
Cho hình lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy a. Góc giữa đường thẳng AB’ và mặt
phẳng (BB’CC’) bằng α . Tính diện tích toàn phần của hình trụ.
II/ PHẦN RIÊNG (3,0 điểm)A/ Chương trình chuẩn: A/ Chương trình chuẩn: Câu IV.a : (2,0điểm)
Trong hệ tọa độ Oxyz, cho đường thẳng (d): x2+1= y1−1= z3−2 và mp(P):x-y-z-1= 0 .
1/ Tìm phương trình chính tắc của đường thẳng ( )∆ đi qua A(1;1;-2) song song với (P) và vuông góc với đường thẳng (d).
2/ Tìm một điểm M trên đường thẳng (d) sao cho khoảng cách từ M đến mp(P) là 5 33
Câu V.a : (1,0điểm)
Tính diện tích hình phẳng (H) giới hạn bỡi các đường: y = x2-2x và hai tiếp tuyến với đồ thị của
hàm số này tại gốc tọa độ O và A(4 ; 8)
B/ Chương trình nâng cao :Câu IV.b : (2,0điểm) Câu IV.b : (2,0điểm)
Trong không gian Oxyz, cho tứ diện ABCD với A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) . 1/ Viết phương trình đường vuông góc chung của AB và CD. Tính thể tích tứ diện ABCD. 2/ Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD .
Câu V.b : (1,0điểm)
Tính thể tích của khối tròn xoay được sinh bỡi hình phẳng giới hạn bỡi hình phẳng giới hạn bỡi
các đường : sin ( cos sin ) ; 0 ; 0 ; 2
π
= x+ = = =
y x e x y x x khi nó quay quanh trục Ox.
ĐỀ 71
I/ PHẦN DÀNH CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I: (3,0điểm) Câu I: (3,0điểm)
Cho hàm số y = 2x3-3x2-1 có đồ thị (C).
1/Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
2/Gọi dk là đường thẳng đi qua M(0;-1) và có hệ số góc k .Tìm k để đường thẳng dk cắt(C) tại 3 điểm phân biệt .
Câu II: (3,0điểm)
1/ Tìm m để hàm số 1sin 3 sin 3 = + y x m x đạt cực đại tại x=π3. 2/ Giải phương trình : 4x− x2−5−12.2x− −1 x2−5+ =8 0. 3/ Tính tích phân : I =1 2 0 4 5 3 2 + + + ∫ x dx x x .
Câu III: (1,0điểm)
Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = 3, BC = 4, SA = 6.
1/ Tính thể tích khối chóp S.ADE.
2/ Tính khoảng cách từ E đến mặt phẳng (SAB).
II/ PHẦN RIÊNG (3,0 điểm)A/ Chương trình chuẩn: A/ Chương trình chuẩn: Câu IV.a : (2,0điểm)
Trong mặt phẳng toạ độ Oxyz cho hai điểm: A(1;0;0) ; B(0;-2;0) và OC iuuur r= −2rj; ODuuur=3rj+2kr. 1/ Tính góc ABC và góc tạo bởi hai đường thẳng AD và BC.
2/ Lập phương trình mặt cầu ngoại tiếp tứ diện ABCD. Xác định tâm và bán kính của mặt cầu.
Câu V.a : (1,0điểm)
Cho z = 1 3
2 2
− + i . Hãy tính : 1 ( )3 2 ; ;z z ; 1+ +z z z