Chọn lựa phương pháp nhận dạng

Một phần của tài liệu XÂY DỰNG MÔ HÌNH ĐỘNG HỌC CHO LÒ HƠI TRONG NHÀ MÁY ĐẠM PHÚ MỸ (Trang 42 - 46)

5.1.1 Các biến quá trình và quy mô của mô hình

Như đã mô tả trong chương 2, đối tượng lò hơi là quá trình có tính phi tuyến mạnh, do đó (trong khuôn khổ luận văn này) việc nhận dạng được thực hiện dựa trên ý tưởng tuyến tính hóa đặc tính phi tuyến của lò hơi quanh điểm làm việc.

Trong chương 3, chúng ta đã đề cập tới vấn đề điều khiển lò hơi, để vận hành lò hơi cần phải kiểm soát được 4 vấn đề:

i. Mức nước trong bao hơi.

ii. Chất lượng quá trình cháy trong buồng lửa.

iii. Nhiệt độ hơi quá nhiệt ở ngõ ra.

iv. Áp suất hơi quá nhiệt ở ngõ ra.

Vấn đề i. được duy trì chủ yếu bằng cách duy trì cân bằng vật chất vào ra của lò hơi (tức là khối lượng nước vào và khối lượng hơi ra phải bằng nhau). Quá trình này được điều tiết bằng một vòng điều khiển cascade bao gồm 2 bộ điều khiển FIC8251 và LIC8250A. Bộ điều khiển LIC8250 chỉ hoạt động khi mức nước trong bao hơi xuống quá thấp, lúc đấy LIC8250 sẽ mở hoàn toàn van LV8250 để đưa nước vào để mức nước trong bao hơi trở về giá trị phù hợp (tuy nhiên lúc này thì lò hơi không ở trong trạng thái hoạt động ổn định nữa, do vậy ta không xét đến trạng thái này của lò hơi). Bởi vì tính độc lập giữa việc duy trì mức nước trong bao hơi và chất lượng hơi quá nhiệt ở ngõ ra (dao động của lưu lượng hơi ở ngõ ra (dẫn tới dao động của lượng nước ở ngõ vào) được xem như là nhiễu tải), ta không đưa vòng điều khiển này vào mục tiêu nhận dạng của luận văn này.

Vấn đề ii. được duy trì bằng việc bổ sung một bộ điều khiển tỉ lệ AIC8250 để duy trì chất lượng quá trình cháy (thông qua việc duy trì nồng độ Ôxy trong khí thải theo đặc tính tối ưu quá trình cháy đã cho trước). Bộ điều khiển tỉ lệ này sẽ làm nhiệm vụ thay đổi tỉ lệ khí-nhiên liệu (air – gas) sao cho nồng độ Ôxy đúng như mong đợi (biểu

đồ nồng độ Ôxy xem hình 5.1.1-1). Như vậy, việc duy trì được nồng độ Ôxy tối ưu đồng nghĩa với quá trình cháy là tốt nhất, lúc này ta chỉ cần quan tâm đến ảnh hưởng của nhiệt lượng lên đến chất lượng hơi, hay nói cách khác chính là cần xác định được ảnh hưởng của lưu lượng nhiên liệu đến nhiệt độ và áp suất của hơi quá nhiệt. Do vậy, vòng điều khiển ii. được xem như là vòng điều khiển độc lập và ta không xét đến nó trong việc thiết lập mô hình cho lò hơi ở luận văn này.

Hình 5.1.1-10: Nồng độ Ôxy tối ưu đối với từng mức tải của lò hơi.

Vấn đề iii. được giải quyết bằng cách dùng một dòng nước làm mát phun thẳng vào đường ống hơi để điều tiết nhiệt độ của dòng hơi quá nhiệt ở ngõ ra, như được mô tả trong mục 3.2.2. Giá trị đặt cho bộ điều tiết lưu lượng nước FIT8252 được lấy từ bộ điều khiển TIC8253 và tín hiệu feed forward của nhiên liệu FI8201.

Vấn đề iv. được kiểm soát thông qua lưu lượng nhiên liệu vào buồng đốt FI8201 như đã đề cập trong mục 3.2.3. Tuy nhiên bên cạnh ngõ ra của PIC4048, giá trị đặt cho bộ điều khiển FIC8201 còn phải được cộng thêm vào độ biến thiên lưu lượng hơi ở ngõ ra FI8253.

Như vậy, trong khuôn khổ của luận văn này, việc nhận dạng lò hơi chỉ thực hiện cho quá trình trao đổi nhiệt và sinh hơi, mà không quan tâm đến quá trình cháy và quá trình duy trì mực chất nước trong bao hơi vì chúng độc lập với quá trình trao đổi năng lượng trong lò hơi. Bên cạnh đấy ta cũng giả thiết là các vòng điều khiển i. (mức nước trong bao hơi) và ii. (quá trình đốt cháy nhiên liệu) đang hoạt động ở chất lượng tốt

nhất và ổn định. Lúc này hai biến đầu vào là lưu lượng nhiên liệu ở ngõ vào buồng đốt FI8201 và lưu lượng nước làm mát FI8252 (quench water) ở bộ Desuperheater và hai biến ngõ ra là nhiệt độ TI8253 và áp suất của hơi quá nhiệt ở ngõ ra PI4048.

Hệ thống chịu tác động của nhiễu đo và nhiễu tải (lưu lượng khối lượng hơi quá nhiệt FI8253). Thực tế, nhiễu đo bao gồm chủ yếu 3 thành phần: nhiễu do nhiệt độ môi trường tác động lên thiết bị đo, nhiễu do trường điện từ cao tần phát từ các động cơ điện và nhiễu do chính bản thân phương pháp đo gây ra. Do bức xạ từ buồng đốt, bao hơi và các ống dẫn hơi mà nhiệt độ quanh lò hơi khá cao (từ 25 oC đến 60 oC hoặc cao hơn nếu như có xảy rò hơi), điều này có thể làm cho các thiết bị đo hoạt động không ổn định. Bên cạnh đấy trường điện từ do các động cơ điện sinh ra khá mạnh có thể tác động lên thiết bị đo làm sinh ra các điện áp cảm ứng bên trong các phần tử tích cực trong thiết bị đo mà làm sai lệch kết quả đo. Đối với phương pháp đo lưu lượng bằng tấm lỗ orrifice, sai số gây ra từ nhiễu loạn áp suất tạo bởi cảm biến tấm lỗ orrifice tác động lên là ngẫu nhiên và có thể lên đến 1%. Chính vì thế, ta xem nhiễu đo cũng chính là nhiễu trắng có kỳ vọng bằng 0, do đó ta xem như quá trình chỉ chịu tác động của nhiễu trắng và nhiễu tải.

Hình 5.1.1-11: Quá trình và các biến quá trình được sử dụng trong mô hình.

5.1.2 Chọn lựa phương pháp thiết lập mô hình

Như đã xác định trong mục tiêu của luận văn (mục 1.1), mô hình lò hơi được thiết lập nhằm hướng tới mục đích tối ưu hoạt động của lò hơi. Do vậy, người thực hiện mặc định lựa chọn phương pháp ứng dụng nguyên lý bình phương tối thiểu để đảm

bảo mô hình có độ chính xác tương đối cao. Mặc khác, phương pháp bình phương tối thiểu còn có ưu điểm lớn đó là nó rất hiệu quả trong việc tìm cực tiểu toàn cục của hàm tối ưu, cho nên kết quả thu được có độ tin cậy cao.

Do tính liên tục của quá trình sản xuất và vai trò quan trọng của lò hơi đối với quá trình sản xuất (là nguồn cung cấp năng lượng cho các turbine) nên yêu cầu về chất lượng hơi khá nghiêm ngặt. Quá trình vận hành luôn yêu cầu hơi nước quá nhiệt ở ngõ ra phải bảo đảm được cả chất lượng (nhiệt độ, áp suất) và số lượng (để cung cấp đầy đủ và kịp thời cho tải là các hệ thống máy động dùng turbine). Chính vì vậy, việc thực hiện thu thập dữ liệu để nhận dạng hệ thống bắt buộc phải thực hiện trong lúc lò hơi đang hoạt động, tức là phải thực hiện nhận dạng trong vòng kín.

Các biến quá trình chủ yếu là các đại lượng áp suất, nhiệt độ và lưu lượng đều là các đại lượng chịu ảnh hưởng của nhiễu đo mạnh mẽ. Ví dụ đối với thiết bị đo áp suất, giá trị áp suất đo được là áp suất tương đối, do đó trước tiên nó chịu ảnh hưởng của áp suất khí quyển, bên cạnh đấy việc đo lưu chất có nhiệt độ cao làm chính bản thân thiết bị đo nằm trong môi trường có nhiệt độ cao hơn bình thường mà tác động của nhiệt độ lên các linh kiện bán dẫn trong mạch đo cũng gây ra sai số đáng kể. Đối với thiết bị đo nhiệt độ, mặc dù sử dụng cảm biến là RTD có độ tin cậy cao, nhưng nó vẫn phải chịu tác động của nhiệt độ môi trường. Bên cạnh ảnh hưởng của môi trường, thiết bị đo lưu lượng (sử dụng cảm biến là tấm lỗ orifice, đo theo nguyên lý chênh áp) còn phải chịu nhiễu loạn áp suất do chính cảm biến orifice gây ra, mà nhiễu loạn này thuộc về bản chất của phương pháp đo và không khắc phục được.

Đối với quá trình chịu ảnh hưởng của nhiễu, mô hình được đề nghị là ARMAX và BJ. Hai mô hình này có khả năng thiết lập được mô hình nhiễu, điều đấy làm chúng trở nên linh hoạt với tác động của nhiễu (xem mục 4.2.4); đối với ARMAX mô hình nhiễu

được thể hiện qua C(q−1) còn đối với BJ là

) ( ) ( 1 1 − − q D q C

. Nhờ vào việc thiết lập mô hình

cho nhiễu mà các mô hình ARMAX và BJ (nếu như bài toán tối ưu cho kết quả hội tụ) có khả năng phân lập được ảnh hưởng của thành phần nhiễu ra khỏi mô hình quá trình dẫn đến kết quả là mô hình thu được có độ chính xác cao hơn (lúc này yˆ(t)→y(t) và

) ( ) (te t

quá trình (hay nhiễu tải (load disturbances)), còn đối với nhiễu đo (measurement disturbances) nên dùng mô hình BJ để thể hiện.

Một phần của tài liệu XÂY DỰNG MÔ HÌNH ĐỘNG HỌC CHO LÒ HƠI TRONG NHÀ MÁY ĐẠM PHÚ MỸ (Trang 42 - 46)

Tải bản đầy đủ (DOC)

(86 trang)
w