Đây là yêu cầu cơ bản về tính an toàn của hệ mã hóa khóa công khai. Khi Bob dùng khóa công khai cua Alice mã hóa thông tin của mình và gửi cho Alice, thám mã bằng cách nào đó lấy được bản mã, thì cũng “khó” thể giải được bản mã (việc giải bản mã là không thể thực hiện được trong thời gian chấp nhận), nếu không biết khóa bí mật mà Alice nắm giữ.
Một cách hình thức với bất lỳ thám mã A trong việc tìm ra bản rõ từ bản mã cho trước, mà không có khóa bí mật, thì xác suất thành công là “không đángkể” trên không gian xác xuất M x Ω, trong đó M là không gian của các bản rõ (message) và Ω là không gian những thành phần ngẫu nhiên r.
Kí hệu Succow (A) là xác xuất thành công của kẻ thám mã A sử dụng giải thuật thời gian đa thức để tìm ra bản rõ m.
Gk là giải thuật tạo cặ khóa công khai và bí mật (pk và sk), có đầu vào là chuỗi z ∈{0,1}k, có nghĩa z là chuỗi có độ dài k bít, mỗi bit có thể là bit 0 hoặc bit 1.
E là giải thuật mã hóa, Epk(m) là bản mã của m. A là kẻ thám mã dùng giả thuật thời gian đa thức có hai đầu vào là khóa công khai pk và bản mã Epk(m).
Succow(A) = Pr[(Gk(z) → (pk, sk), M R→ m): A(pk, Epk(m)) = m] < ε , trong đó ε là lượng không đáng kể.
Nếu giải thuật mã hóa là đơn định (một đầu vào duy nhất có một đầu ra), thì Ω = Φ. Nếu Ω = Φ thì để đảm bảo tính an toàn, không gian M phỉa lớn. Đôi khi M lớn, nhưng nếu thám mã đoán trước được tần suất của không gian con trong M, hay được dùng làm bản rõ, thì cũng dễ gây nguy hiểm.
Thực tế những hệ mã có Ω = Φ (không phỉa là hệ mã xác xuất), thì có tính an toàn không cao, và ít được dùng trong thực tế.