Hiển thị những kiến thức về tổng quan của mạng WSN, một số điểm mạnh và khó khăn.
Tóm tắt lại một số thách thức phân tuyến và thiết kế các vấn đề có hiệu quả phân tuyến trong WSN. Nghiên cứu chi tiết về một số thuật toán phân tuyến. Sau đó, đánh giá hiệu quả của thuật toán điển hình.
Thực hiện thành công mô phỏng về ba giao thức phân tuyến của NS2, sau đó đánh giá sự mạnh và yếu của mỗi giao thức.
Các kỹ thuật phân tuyến cho thấy ở trên, hầu hết những giao thức này giả định rằng các nút cảm biến và BS không chuyển động. Tuy nhiên, có rất nhiều các ứng dụng nhƣ thu thập dữ liệu môi trƣờng nơi mà các BS và những nút cảm biến cần phải di động. Vì vậy, chúng ta cần phải nghiên cứu thuật toán phân tuyến mới có thể xử lý và Topology thay đổi trong ngƣỡng năng lƣợng của môi trƣờng.
Khi nhận đƣợc tất cả các dữ liệu của các nút là tƣơng quan với nhau, chúng tôi sẽ sử dụng những giao thức phân tuyến để tiết kiệm năng lƣợng trong tổng số mạng. Bởi vì tƣơng quan dữ liệu, dữ liệu đến từ các cảm ứng có thể xa nhau đƣợc tổng hợp lại với nhau.
Tuy nhiên, với mạng lƣới đó sẽ không đƣợc nhƣ quy mô lớn nhƣ những cái mà chúng tôi đã thảo luận nhƣ là cảm biến cho mạng lƣới y tế theo dõi các ứng dụng khác nhau có thể có cảm ứng nằm trên cơ thể, nhƣng họ sẽ có tƣơng tự nhƣ yêu cầu với mạng lƣới các cảm biến, chúng tôi đã thảo luận - Hệ thống lâu dài trong đời, chất lƣợng cao, ... Các mạng lƣới dữ liệu sẽ tập trung vào chất lƣợng tối đa ở trên tất cả các thông số, và mất mát thông tin sẽ không đƣợc chấp nhận đƣợc. Vì vậy thức kiến trúc cần phải đƣợc phát triển để hỗ trợ cho các mạng lƣới.
Đánh giá với các phần mềm mô phỏng:
Tracefile đã đƣợc cải tiến để làm cho chi tiết các tham số cho đánh giá nhƣ: đời, năng lƣợng, dữ liệu ....