- Giới thiệu về MPLS trong VPN
MPLS là một công nghệ kết hợp đặc điểm tốt nhất giữa định tuyến lớp ba và chuyển mạch lớp hai cho phép chuyển tải các gói rất nhanh trong mạng lõi (core) và định tuyến tốt mạng biên (edge) bằng cách dựa vào nhãn (label). MPLS là một phương pháp cải tiến việc chuyển tiếp gói trên mạng bằng cách gắn nhãn vào mỗi gói IP, tế bào ATM, hoặc frame lớp hai. Phương pháp chuyển mạch nhãn giúp các Router và các bộ chuyển mạch MPLS-enable ATM quyết định theo nội dung nhãn tốt hơn việc định tuyến phức tạp theo địa chỉIP đích. MPLS cho phép các ISP cung cấp nhiều dịch vụkhác nhau mà không cần phải bỏ đi cơ sở hạ tầng sẵn có. Cấu trúc MPLS có tính mềm dẻo trong bất kỳ sự phối hợp với công nghệ lớp hai nào.
MPLS hỗ trợ mọi giao thức lớp hai, triển khai hiệu quả các dịch vụ IP trên một mạng chuyển mạch IP. MPLS hỗ trợ việc tạo ra các tuyến khác nhau giữa nguồn và đích trên một đường trục Internet. Bằng việc tích hợp MPLS vào kiến trúc mạng, các ISP có thểgiảm chi phí, tăng lợi nhuận, cung cấp
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
nhiều hiệu quả khác nhau và đạt được hiệu quả cạnh tranh cao.
Đặc điểm mạng MPLS:
- Không có MPLS API, cũng không có thành phần giao thức phía host. - MPLS chỉ nằm trên các router.
- MPLS là giao thức độc lập nên có thểhoạt động cùng với giao thức khác IP nhưIPX, ATM, Frame Relay,…
- MPLS giúp đơn giản hoá quá trình định tuyến và làm tăng tính linh động của các tầng trung gian.
Phương thức hoạt động:
Thay thế cơ chế định tuyến lớp ba bằng cơ chế chuyển mạch lớp hai.MPLS hoạt động trong lõi của mạng IP. Các Router trong lõi phải enable MPLS trên từng giao tiếp. Nhãn được gắn thêm vào gói IP khi gói đi vào mạng MPLS. Nhãn được tách ra khi gói ra khỏi mạng MPLS. Nhãn (Label) được chèn vào giữa header lớp ba và header lớp hai. Sử dụng nhãn trong quá trình gửi gói sau khi đã thiết lập đường đi. MPLS tập trung vào quá trình hoán đổi nhãn (Label Swapping). Một trong những thế mạnh của kiến trúc MPLS là tự định nghĩa chồng nhãn (Label Stack).
Kỹ thuật chuyển mạch nhãn không phải là kỹ thuật mới. Frame relay và
ATM cũng sử dụng công nghệ này để chuyển các khung (frame) hoặc các cell qua mạng. Trong Frame relay, các khung có độdài bất kỳ, đối với ATM độ dài của cell là cố định bao gồm phần mào đầu 5 byte và tải tin là 48 byte. Phần mào đầu của cell ATM và khung của Frame Relay tham chiếu tới các kênh ảo mà cell hoặc khung này nằm trên đó. Sự tương quan giữa Frame relay và ATM là tại mỗi bước nhảy qua mạng, giá trị“nhãn” trong phần mào đầu bị thay đổi. Đây chính là sự khác nhau trong chuyển tiếp của gói IP. Khi một route chuyển tiếp một gói IP, nó sẽ không thay đổi giá trị mà gắn liền với đích đến của gói; hay nói cách khác nó không thay đổi địa chỉ IP đích của gói. Thực tế là các nhãn MPLS thường được sử dụng để chuyển tiếp các gói và địa chỉ IP đích không còn phổ biến trong MPLS nữa.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
Các lợi ích của MPLS
Phần này sẽ giới thiệu một cách ngắn gọn những lợi ích của việc sử dụng MPLS trong mạng. Những lợi ích này bao gồm:
o Việc sửdụng hạtầng mạng thống nhất
o Ưu điểm vượt trội so với mô hình IP over ATM o Giao thức cổng biên (BGP) – lõi tựdo
o Mô hình peer to peer cho MPLS VPN o Chuyển lưu lượng quang
o Điều khiển lưu lượng
Ta sẽxem xét vềlý do không có thực đểchạy MPLS. Đây là lý do mà được xem hợp lý đầu tiên trong việc sửdụng MPLS nhưng nó không phải là
lý do tốt đểtriển khai MPLS.
• Lợi ích không có thực (lợi ích về tốc độ):
Một trong những lý do đầu tiên đưa ra của giao thức trao đổi nhãn đó là sự cần thiết cải thiện tốc độ. Chuyển mạch gói IP trên CPU được xem như chậm hơn so với chuyển mạch gói gán nhãn do chuyển mạch gói gán nhãn chỉ tìm kiếm nhãn trên cùng của gói. Một bộ định tuyến chuyển tiếp gói IP bằng việc tìm kiếm địa chỉIP đích trong phần mào đầu IP và tìm kiếm kết nối tốt nhất trong bảng định tuyến. Việc tìm kiếm này phụthuộc vào sựthực hiện của từng nhà cung cấp của bộ định tuyến đó. Tuy nhiên, bởi vì địa chỉIP có thể là đơn hướng hoặc đa hướng (unicast hoặc multicast) và có 4 octet (1 octet = 1 ô 8 bit) nên việc tìm kiếm có thểrất phức tạp. Việc tìm kiếm phức tạp cũng có nghĩa là quyết định chuyển tiếp gói IP mất một thời gian. Thời gian gần đây, các đường kết nối trên những bộ định tuyến có thểcó băng thông lên tới 40 Gbps. Một bộ định tuyến mà có một vài
đường link tốc độcao không có khảnăng chuyển mạch tất cảnhững gói IP mà chỉ sử dụng CPU để đưa ra quyết định chuyển tiếp. CPU tồn tại chủyếu đểsửdụng (điều khiển) bảng điều khiển.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
Mặt phẳng điều khiển là một tập các giao thức đểthiết lập một mặt phẳng dữliệu hoặc mặt phẳng chuyển tiếp. Các thành phần chính của mặt phẳng điều khiển bao gồm giao thức định tuyến, bảng định tuyến và chức năng điều khiển khác hoặc giao thức báo hiệu được sửdụng đểcung cấp mặt phẳng dữ liệu. Mặt phẳng dữ liệu là một đường chuyển tiếp gói qua bộ định tuyến hoặc bộ chuyển mạch. Sựchuyển mạch của các gói – hay mặt phẳng chuyển tiếp – hiện nay được thực hiện trên phần cứng được xây dựng riêng, hoặc thực hiện trên mạch tích hợp chuyên dụng (ASIC – Application specific intergrated circuits). Việc dùng ASIC trong mặt phẳng chuyển tiếp của bộ định tuyến dẫn đến những gói IP được chuyển mạch nhanh nhưcác gói được dán nhãn. Do đó, nếu lý do duy nhất để đưa MPLS vào mạng là đểtiếp tục thực hiện việc chuyển mạch các gói nhanh hơn qua mạng, đó chính là lý do ảo.
Sử dụng hạ tầng mạng đơn hợp nhất Với MPLS, ý tưởng là gán nhãn cho gói đi vào mạng dựa trên địa chỉ đích của nó hoặc tiêu chuẩn trước cấu hình khác và chuyển mạch tất cả lưu lượng qua hạ tầng chung. Đây là một ưu điểm vượt trội của MPLS. Một trong những lý do mà IP trở thành giao thức duy nhất ảnh hưởng lớn tới mạng trên toàn thế giới là bởi vì rất nhiều kỹthuật có thể được chuyển qua nó. Không chỉlà dữ liệu (sốliệu) chuyển qua IP mà còn cảthoại. Bằng việc sửdụng MPLS với IP, ta có thểmởrộng khảnăng truyền loại dữ liệu. Việc gắn nhãn vào gói cho phép ta mang nhiều giao thức khác hơn là chỉcó IP qua mạng trục IP lớp 3 MPLS-enabled, tương tựvới những khả năng thực hiện được với mạng Frame Relay hoặc ATM lớp 2. MPLS có thể truyền IPv4, IPv6, Ethernet, điều khiển kết nối dữliệu tốc độcao (HDLC), PPP, và những kỹ thuật lớp 2 khác. Chức năng mà tại đó bất kỳ khung lớp 2 được mang qua mạng đường trục MPLS được gọi là Any Transport over MPLS (AToM). Những bộ định tuyến đang chuyển lưu lượng AToM không cần thiết phải biết tải MPLS; nó chỉ cần có khả năng chuyển mạch lưu lượng được dán nhãn bằng việc tìm kiếm nhãn trên đầu của tải. Vềbản chất, chuyển mạch nhãn MPLS là một công thức đơn giản của chuyển mạch đa giao
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
thức trong một mạng. Ta cần phải có bảng chuyển tiếp bao gồm các nhãn đến đểtrao đổi với nhãn ra và bước tiếp theo.
Các bộ định tuyến ảo MPLS-VPN
Một bộ định tuyến ảo là một tập các chức năng, cả tĩnh và động trong thiết bị định tuyến, nó cung cấp các dịch vụ định tuyến và gửi chuyển tiếp giống các bộ định tuyến vật lý. Một bộ định tuyến ảo không nhất thiết là một tiến trình hệ thống vận hành riêng rẽ (mặc dầu nó có thể là như vậy). Một bộ định tuyến ảo, giống như bản sao vật lý của nó, là một thành phần trong một miền định tuyến. Các bộ định tuyến khác trong miền này có thể là các bộ định tuyến vật lý hay ảo. Với giả thiết bộ định tuyến ảo kết nối vào một miền định tuyến xác định và bộ định tuyến vật lý có thể hỗ trợ nhiều bộ định tuyến ảo, sẽ xảy ra hiện tượng một bộ định tuyến vật lý hỗ trợ nhiều miền định tuyến.
Từ quan điểm của khách hàng VPN, đòi hỏi một bộ định tuyến ảo phải tương đương với một bộ định tuyến vật lý. Nói cách khác, với rất ít ngoại lệ , bộ định tuyến ảo nên thiết kế cho nhiều mục đích (cấu hình, quản lý, giám sát, xử lý sự cố) giống như các bộ định tuyến vật lý. Động cơ chính đằng sau những đòi hỏi này là để tránh việc nâng cấp hoặc cấu hình lại những cơ sở đã được cài đặt của các bộ định tuyến và để tránh phải đào tạo lại các nhà quản lý mạng.
Các đặc tính mà bộ định tuyến ảo cần có là:
Cấu hình của bất cứ sự kết hợp giữa các giao thức định tuyến.
Giám sát mạng
Xử lý sự cố
Tất cả các VPN đều có miền định tuyến độc lập logic. Điều này tăng cường khả năng của SP cho phép cung cấp dịch vụ bộ định tuyến ảo hoàn toàn mềm dẻo mà nó có thể phục vụ các khách hàng của SP mà không cần đòi hỏi các bộ định tuyến vật lý cho VPN. Điều này có nghĩa là các đầu tư vào phần cứng của SP là các bộ định tuyến và các liên kết giữa chúng mà chúng có thể được các khách hàng sử dụng lại.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
Hình 2.3: Kiến trúc MPLS- VPN
Mặt phẳng dữ liệu dùng thông tin chuyển tiếp nhãn để thực hiện chuyển tiếp các gói tin dựa trên nhãn mang theo gói.
Mặt phẳng điều khiển có nhiệm vụ tạo và duy trì thông tin chuyển tiếp nhãn giữa một nhóm các router chuyển mạch nhãn kết nối với nhau. Các cơ chế ở mặt phẳng điều khiển như sau:
· IGP – không khác gì với IGP trong mạng chỉ dùng IP . Trong mạng MPLS khi dùng quản lý lưu lượng, IGP phải là giao thức trạng liên kết (link-state protocol): OSPF hay IS-IS.
· Giao thức phân phối nhãn – LDP (Label Distribution Protocol), TDP (Tag Distribution Protocol), RSVP.
RSVP dùng cho quản lý lưu lượng. TDP và LDP là hai phiên bản khác nhau; TDP cũ hơn, LDP được tiêu chuẩn hóa.
Ghép nhãn là sự kết hợp của một nhãn và tiền tố. LDP hoạt động kết hợp với IGP để phân phối thông tin ghép nhãn cho tất cả tuyến tới láng giềng của nó. Các láng giềng LDP được thiết lập qua các liên kết chạy LDP.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
· BGP – ở đây có điểm khác nhau giữa mạng MPLS và mạng phi MPLS. Thay vì cần BGP ở mỗi router, BGP chỉ cần ở các biên mạng. BGP không cần trong mạng lõi vì LER vào biết chặng kế cho tất cả các tuyến học từ BGP.
Tại biên mạng, các router PE đóng gói IP bằng một tiêu đề MPLS (nhãn) 32-bit. Tiêu đề MPLS, còn gọi là tiêu đề chèn (shim header), được đặt giữa tiêu đề lớp 2 và gói lớp 3. Ví dụ, frame relay – trong môi trường IP over frame relay truyền thống, gói lớp 3 sẽ theo sau là tiêu đề frame relay trong khung lớp 2. Với MPLS, một tiêu đề mới sẽ được đặt vào giữa tiêu đề frame relay và gói lớp 3.
Hình 2.4: Vị trí nhãn MPLS trong khung lớp 2
Tiêu đề MPLS là kết hợp của nhãn 20 bit, 3 bit trường experimental dùng để mang thông tin lớp dịch vụ (tương tự trường ToS trong một gói IP), trường 1 bit (gọi là bit S) dùng để chỉ thị nhãn cuối chồng, và một trường TTL 8 bit dùng để tránh lặp – tương tự với TTL trong IP.
Hình 2.5 Định dạng nhãn MPLS kiểu khung
Khi nhãn MPLS được chèn giữa tiêu đề lớp 2 và gói lớp 3, router nhận phải có cách để xác định khung vào là gói nhãn MPLS hay là gói IP thông thường. Để đạt được điều này, IETF đã định nghĩa loại giao thức mới nhận biết các gói MPLS trong các giao thức lớp 2 khác nhau. Trong ví dụ của frame relay, tiêu đề snap được dùng với giá trị trường ethertype là 0x8847.
Phân phối nhãn
Các gói IP được gắn nhãn ở biên mạng và nhãn đó được dùng qua vùng để chuyển gói. Làm cách nào để router biên biết được phải gắn nhãn nào cho gói, và bằng
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
cách nào router bên trong biết cách chuyển tiếp gói dựa trên nhãn? Câu trả lời là thông qua thông tin ghép nhãn được tạo bằng các giao thức ghép nhãn.
Cisco thực hiện hai giao thức ghép nhãn để ghép các tiền tố IP với các nhãn MPLS: Giao thức phân phân phối nhãn TDP, là giao thức của Cisco và giao thức phân phối nhãn LDP, là chuẩn của IETF.
LDP hay TDP hoạt động giữa các router chạy MPLS để phân phối thông tin ghép nhãn. Khi một router cấu hình MPLS, cấu trúc cơ sở thông tin nhãn (LIB) được tạo ra trong router. Lúc này, mỗi tiền tố IP trong bảng định tuyến được gán một nhãn MPLS và thông tin liên kết được lưu trong LIB. LDP hay TDP dùng để phân phối thông tin ghép nhãn/tiền tố IP tới tất cả các router MPLS láng giềng.
Các router láng giềng lưu trữ thông tin ghép nhãn trong LFIB (cơ sở thông tin chuyển tiếp nhãn) nếu thông tin ghép nhãn từ láng giềng xuôi dòng, nghĩa là thông tin này đến từ láng giềng được dùng như là chặng kế IGP để đến đích. Thông tin ghép nhãn từ router chặng kế và ghép nhãn cục bộ được đưa vào LFIB. Nếu không có thông tin ghép nhãn từ router chặng kế, trong LFIB đánh dấu tiền tố đó là không gắn nhãn, Router sẽ chuyển tiếp gói không dùng nhãn. Nếu mạng kết nối trực tiếp với router, LFIB gán nhãn null cho tiền tố; điều này cho router biết rằng cần thiết phải chuyển tiếp IP cho gói.
Một ví dụ cụ thể để xem xét cách hoạt động của quá trình phân phối nhãn: 1. RouterA quảng cáo mạng 192.1.1.0 bằng OSPF. RouterD biết rằng để đến được mạng 192.1.1.0 nó phải chuyển tiếp gói tới chặng kế là 195.1.1.1. RouterC biết rằng để đến 192.1.1.0 nó phải chuyển tiếp gói ra serial 0 tới chặng kế 194.1.1.1. RouterB muốn tới 192.1.1.0, nó phải chuyển tiếp gói ra Serial 1 tới chặng kế 193.1.1.1. RouterA biết rằng 192.1.1.0 nối trực tiếp với interface E0. (Hình 1) 2. MPLS được bật và LDP (hay TDP) được cấu hình trên mỗi router.
3. Khi MPLS được bật, router xây dựng LIB gắn một nhãn cho mỗi tiền tố trong bảng IGP. Để đơn giản chỉ xem xét ghép nhãn cho tiền tố 192.1.1.0 (Hình 2).
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
Hình 2.6. Dùng OSPF để quảng cáo các mạng
Hình 2.7. Trao đổi nhãn bằng giao thức TDP
4. RouterA dùng null label cho tiền tố vì nó nối trực tiếp. RouterB gán nhãn 10 và RouterC gán nhãn 20.
5. Dùng TDP hay LDP, RouterA gởi thông tin ghép nhãn cho RouterB chỉ rằng nó sẽ dùng nhãn null khi chuyển tiếp gói tới RouterA có đích là 192.1.1.0. Nhãn null chỉ ra rằng RouterB phải gở bỏ (pop) nhãn và chuyển tiếp gói IP thông thường. RouterB gởi thông tin ghép nhãn cho RouterC: nó sẽ dùng nhãn 10 khi gởi một gói tới mạng 192.1.1.0. Không có neighbor xuôi dòng nào cho RouterC.
6. Thông tin đưa vào LFIB của mỗi router.
7. Một gói từ RouterD muốn tới mạng 192.1.1.0. RouterD nhìn vào LFIB, nó phải gắn nhãn 20 và gởi ra interface tới chặng kế là 195.1.1.1. RouterC thấy gói nhãn
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
MPLS vào với nhãn là 20 , xem xét LFIB chỉ ra rằng nó phải chuyển thành nhãn 10 và chuyển tiếp ra interface serial 0 tới chặng kế 194.1.1.1. RouterB thấy gói nhãn MPLS vào với giá trị nhãn 10, nó gở bỏ nhãn trước khi chuyển tiếp cho RouterA. (Hình 2.8)