CHƯƠNG 10 KẾT LUẬN

Một phần của tài liệu Lược sử thời gian Steven Hawking (Trang 127 - 136)

Chúng ta thấy mình ở trong một thế giới đầy những thắc mắc. Chúng ta muốn giải thích những gì chúng ta nhìn thấy chung quanh chúng ta và đặt câu hỏi: Bản chất của vũ trụ là gì? chỗ đứng của chúng ta trong đó là gì và nó và chúng ta từ đâu mà tới? Tại sao nó lại như thế?

Để cố trả lời những câu hỏi này chúng ta chấp nhận một "hình ảnh thế giới" nào đó. Cũng như một cái tháp vô tận gồm những con rùa chống đỡ trái đất dẹp là một hình ảnh như vậy, lý thuyết về những sợi dây siêu đẳng cũng thế. Cả hai đều là những thuyết về vũ trụ, mặc dù thuyết sau có tính cách toán học và chính xác hơn nhiều so với thuyết trước. Cả hai thuyết đều thiếu chứng cớ do quan sát: không ai từng nhìn thấy một con rùa khổng lồ với trái đất nằm trên lưng, nhưng rồi cũng không ai thấy một sợi dây siêu đẳng. Tuy nhiên, thuyết con rùa không phải là một thuyết khoa học tốt bởi vì nó tiên đoán rằng người ta phải có thể rơi khỏi bờ của thế giới. Điều này đã không thấy phù hợp với kinh nghiệm, ngoại trừ nó biến thành sự giải thích về những người coi như đã biến mất trong Tam Giác Bermuda!

Những cố gắng về mặt lý thuyết ban đầu để mô tả và giải thích vũ trụ liên quan đến ý tưởng rằng các biến cố và hiện tượng thiên nhiên bị kiểm soát bởi những thần linh có những cảm xúc của con người và hành động theo một bản chất rất giống con người và không thể tiên đoán được. Những thần linh này nằm ở những vật thiên nhiên, như sông và núi, kể cả các vật thể vũ trụ, giống như mặt trời và mặt trăng. Người ta phải làm hài lòng và tìm ân huệ của những thần linh này để bảo đảm sự mầu mỡ của đất đai và sự quay vòng của mùa. Tuy nhiên, dần dần, người ta phải nhận thấy rằng có những sự đều đặn nào đó: mặt trời luôn luôn mọc ở hướng đông và lạên ở hướng tây, dù có dâng vật cúng tế nào cho thần mặt trời hay không. Hơn nữa, mặt trời, mặt trăng, và các hành tinh đi theo những con đường rõ rệt ngang bầu trời, có thể được tiên đoán với sự chính xác đáng kể. Mặt trời và mặt trăng có thể vẫn còn là thần linh, nhưng chúng là những thần linh chịu tuân theo những định luật chặt chẽ, có vẻ như không có ngoại lệ nào, nếu người ta bỏ qua những câu chuyện như câu chuyện mặt trời ngừng lại vì Joshua.

Lúc đầu, những sự đều đặn và định luật này chỉ hiển nhiên trong thiên văn học và một vài tình huống khác. Tuy nhiên, khi nền văn minh phát triển, và đặc biệt trong 300 năm vừa qua, càng ngày những sự đều đặn và các định luật càng được khám phá thêm. Sự thành công của những định luật này đã khiến Laplace vào đầu thế kỷ 19 đưa ra thuyết định mệnh khoa học, nghĩa là,

ông cho rằng sẽ có một bộ các định luật quyết định sự tiến hóa của vũ trụ một cách chính xác, xét về hình dạng của nó tại một thời điểm.

Thuyết định mệnh của Laplace không đầy đủ trên hai phương diện. Nó đã không cho biết các định luật đã được lựa chọn như thế nào và nó đã không định rõ hình dạng ban đầu của vũ trụ. Những điều này đã được dành cho Thượng Đế. Thượng Đế sẽ lựa chọn cách vũ trụ khởi đầu và những định luật nào nó tuân theo, nhưng sẽ không can thiệp vào vũ trụ một khi nó đã khởi đầu. Hậu quả là, Thượng Đế đã bị giới hạn ở những lãnh vực mà khoa học thời thế kỷ 19 đã không hiểu.

Hiện giờ chúng ta biết rằng hy vọng của Laplace về thuyết định mệnh không thể thành hình, ít ra theo các điều kiện mà ông đã hình dung. Nguyên tắc bất định của cơ học lượng tử ngụ ý rằng vài cặp số lượng, như vị trí và tốc độ của một hạt, không thể tiên đoán cả hai với sự chính xác hoàn toàn.

Cơ học lượng tử đối phó với tình trạng này qua một lớp các lý thuyết lượng tử trong đó các hạt không có những vị trí và tốc độ được xác định rõ rệt mà được biểu diễn bởi một sóng. Những lý thuyết lượng tử này có tính cách định mệnh theo ý nghĩa rằng chúng đưa ra những định luật cho sự tiến hóa của sóng theo thời gian. Như vậy nếu người ta biết sóng tại một thời điểm, người ta có thể tính toán nó ở bất cứ thời điểm nào khác. Yếu tố tình cờ, không thể tiên đoán được chỉ du nhập khi chúng ta cố giải thích sóng theo vị trí và tốc độ của các hạt. Nhưng có lẽ đó là sự lầm lẫn của chúng ta: có thểõ không có các vị trí và tốc độ của hạt, mà chỉ có các sóng. Chỉ vì chúng ta cố đưa các sóng vào những ý tưởng đã được ấp ủ từ trước về các vị trí và tốc độ. Sự không ăn khớp do đó là nguyên nhân đưa đến sự bất khả tiên toán thấy rõ.

Thật vậy, chúng ta đã định nghĩa lại nhiệm vụ của khoa học như là sự khám phá các định luật sẽ cho phép chúng ta tiên đoán các biến cố tới các giới hạn được đặt ra bởi nguyên tắc bất định. Tuy nhiên, câu hỏi vẫn còn đó: Như thế nào hoặc tại sao các định luật và tình trạng sơ khởi của vũ trụ đã được lựa chọn?

Trong cuốn sách này tôi đã dành ưu thế đặc biệt cho các định luật chi phối hấp lực, bởi vì chính hấp lực là cái hình thành cơ cấu tầm mức lớn của vũ trụ, mặc dù nó là lực yếu nhất trong số bốn loại lực. Các định luật về hấp lực không phù hợp với quan điểm được duy trì mãi cho tới gần đây rằng vũ trụ không thay đổi theo thời gian: sự kiện rằng hấp lực luôn luôn thu hút ngụ ý

rằng vũ trụ phải hoặc đang bành trướng hoặc đang co rút. Theo thuyết tương đối tổng quát, phải có một tình trạng mật độ vô hạn trong quá khứ, vụ nổ lớn, là một sự khởi đầu có hiệu quả về thời gian. Tương tự, nếu toàn thể vũ trụ co sụp trở lại, phải có một tình trạng mật độ vô hạn khác trong tương lai, vụ đổ vỡ lớn, sẽ là một kết cuộc về thời gian. Cho dù toàn thể vũ trụ không co sụp trở lại, sẽ có những điểm kỳ dị tại những vùng nhỏ co sụp để hình thành các lỗ đen. Những điểm kỳ dị này sẽ là một kết cuộc về thời gian đối với bất cứ ai rơi vào lỗ đen. Tại vụ nổ lớn và những điểm kỳ dị khác, mọi định luật sẽ sụp đổ, do có Thượng Đế vẫn còn hoàn toàn tự do để lựa chọn những gì đã xảy ra và vũ trụ đã bắt đầu như thế nào.

Khi chúng ta kết hợp cơ học lượng tử với thuyết tương đối tổng quát, hình như có một sự khả dĩ mới đã không xuất hiện trước đây: rằng không gian và thời gian cùng nhau có thể hình thành một không gian bốn chiều hữu hạn mà không có các điểm kỳ dị hoặc biên giới, giống như bề mặt của trái đất nhưng với nhiều chiều hơn. Hình như ý tưởng này có thể giải thích nhiều trong số những đặc điểm đã được quan sát của vũ trụ, như sự đồng đều của nó trên tầm mức lớn và cả những thất thoát với tầm mức nhỏ hơn từ sự đồng nhất, như các thiên hà, các ngôi sao, và ngay cả nhân loại. Nó còn liên quan đến mũi tên thời gian mà chúng ta quan sát. Nhưng nếu vũ trụ hoàn toàn tự chứa đựng, mà không có các điểm kỳ dị hoặc biên giới, và hoàn toàn được mô tả bởi một thuyết thống nhất, điều đó có những hàm ý sâu xa về vai trò của Thượng Đế với tính cách Đấng Sáng Tạo.

Einstein có lần đã đặt câu hỏi: "Thượng Đế có bao nhiêu lựa chọn trong việc xây dựng vũ trụ?" Nếu ý kiến không biên giới là đúng, Thượng Đế không có tự do nào trong việc lựa chọn những điều kiện sơ khởi. Dĩ nhiên Thượng Đế vẫn có tự do để lựa chọn những định luật mà vũ trụ tuân theo. Tuy nhiên, điều này có thể không thực sự là một lựa chọn; rất có thể chỉ có một lựa chọn, hoặc một số nhỏ, các lý thuyết thống nhất hoàn chỉnh, như lý thuyết dây dị biệt, tự phù hợp và cho phép sự hiện hữu của các cơ cấu phức tạp như con người, sinh vật có thể khảo sát những định luật của vũ trụ và đặt câu hỏi về bản chất của Thượng Đế.

Cho dù chỉ có thể có một lý thuyết thống nhất, đó cũng chỉ là một bộ các quy luật và các phương trình. Điều gì gây ra những phương trình và tạo một vũ trụ để chúng mô tả? Phương pháp thường lệ của khoa học trong việc xây dựng một mô hình toán học không thể trả lời những câu hỏi tại sao phải có một vũ trụ để mô hình mô tả. Tại sao vũ trụ lại làm cho mọi người thắc mắc về sự hiện hữu? Thuyết thống nhất có đủ sức thuyết phục để đem lại sự tồn

tại của chính nó hay không? Hay liệu có cần một đấng sáng tạo hay không, và, nếu như vậy, đấng sáng tạo có ảnh hưởng nào khác đối với vũ trụ hay không? Và ai tạo ra đấng sáng tạo?

Cho tới bây giờ, hầu hết các khoa học gia còn quá bận rộn với sự phát triển các lý thuyết mới mô tả vũ trụ là gì nên chưa đặt câu hỏi tại sao. Mặt khác, những người làm công việc đặt ra câu hỏi tại sao, các triết gia, đã không thể bắt kịp đà tiến bộ của những lý thuyết khoa học. Trong thế kỷ 18, các triết gia đã coi toàn thể kiến thức của nhân loại, kể cả khoa học, như lãnh vực của họ và thảo luận những câu hỏi như: Vũ trụ đã có một khởi đầu hay không? Tuy nhiên, trong các thế kỷ 19 và 20, khoa học đã trở nên có tính cách quá kỹ thuật và toán học đối với các triết gia, hoặc bất cứ ai khác trừ một số các chuyên gia. Các triết gia đã giảm tầm mức những câu hỏi của họ nhiều đến độ Wittgenstein, triết gia nổi tiếng nhất của thế kỷ này, đã phải nói "Nhiệm vụ chính yếu còn lại cho triết học là phân tích ngôn ngữ." Quả là một tuột dốc từ truyền thống vĩ đại của triết học từ Aristotle đến Kant!

Tuy nhiên, nếu chúng ta khám phá được một lý thuyết hoàn chỉnh, rồi ra nó phải có thể hiểu được trên nguyên tắc rộng rãi bởi tất cả mọi người, không phải chỉ một vài khoa học gia. Rồi tất cả chúng ta, những triết gia, khoa học gia, và cả những người bình thường, sẽ có thể tham gia vào cuộc thảo luận câu hỏi tại sao chúng ta và vũ trụ lại hiện hữu như thế. Nếu chúng ta tìm được câu trả lời cho điều đó, đây sẽ là một chiến thắng tối hậu cho lý luận của con người -- bởi vì khi đó chúng ta sẽ biết được ý nghĩ của Thượng Đế...

---o0o---

THUẬT NGỮ DÙNG TRONG SÁCH

(Theo thứ tự abc của từ ngữ Anh văn trong ngoặc)

Độ không tuyệt đối (absolute zero): Ôn độ thấp nhất có thể đạt đến, ở ôn độ này vật chất không chứa nhiệt năng.

Độ gia tốc (acceleration): Tốc xuất mà tốc độ của một vật thay đổi.

Nguyên lý vị nhân chủng (anthropic principle): Chúng ta thấy vũ trụ ở dạng này là vì nếu nó khác thì chúng ta đã không có mặt ở đây để quan sát nó.

Phản hạt (antiparticle): Mỗi loại hạt vật chất (matter particle) đều có một phản hạt. Khi một hạt đụng chạm với phản hạt của nó thì chúng hủy diệt lẫn nhau, chỉ lưu lại năng lượng.

Nguyên tử (atom): Đơn vị cơ bản của vật chất thông thường, cấu tạo bởi một cái nhân thật nhỏ (trong nhân bao gồm những proton vàtrung hòa tử), với các điện tử chuyển động xung quanh nhân này.

Bùng nổ lớn (big bang): Điểm kỳ dị vào lúc mở đầu vũ trụ. Co sụp lớn (big crunch): Điểm kỳ dị vào lúc kết thúc vũ trụ.

Hố đen (black hole): Một khu vực trong không-thời gian mà từ đó không vật gì, kể cả ánh sáng, có thể thoát ra, vì hấp lực tại đây quá mạnh.

Giới hạn Chandrasekhar (Chandrasekhar limit): Khối lượng tối đa khả hữu của một tinh tú nguội lạnh (cold star) ổn định, nếu vượt quá khối lượng này tinh tú phải co sụp thành một hố đen.

Bảo tồn năng lượng (conservation of energy): Định luật khoa học nói rằng năng lượng (hoặc khối lượng tương đương của nó) không thể được tạo ra hoặc hủy diệt.

Tọa độ (coordinates): Những con số chỉ định vị trí của một điểm trong không-thời gian.

Hằng số vũ trụ (cosmologiacal constant): Một phương pháp toán học mà Einstein đã dùng để khiến không-thời gian có khuynh hướng bành trướng cố hữu.

Vũ trụ luận (cosmology): Môn học nghiên cứu toàn thể vũ trụ.

Điện tích (electric charge): Đặc tánh của một hạt khiến nó đẩy xa (hoặc hấp dẫn) những hạt khác có điện tích giống như nó (hoặc tương phản với nó). Lực điện từ (electromagnetic force): Lực phát ra giữa những hạt có điện tích, lực này có sức mạnh thứ nhì trong bốn lực cơ bản.

Điện tử (electron): Một hạt có điện tích âm chạy quanh nhân của một nguyên tử.

Năng lượng thống nhất điện yếu (electroweak unification energy): Năng lượng (khoảng 100 GeV) mà khi vượt trên giới hạn này thì sự khác biệt giữa lực điện từ và lực yếu sẽ biến mất.

Hạt cơ bản (elementary particle): Một hạt không thể phân chia được nữa. Biến cố (event): Một điểm trong không-thời gian được ấn định bởi không gian và thời gian của nó.

Chân trời biến cố (event horizon): Biên giới của một hố đen.

Nguyên lý loại trừ (exclusion principle): Hai hạt có vòng quay ½ giống hệt nhau không thể vừa có cùng vị trí vừa có cùng tốc độ (trong giới hạn do nguyên lý bất định đặt ra).

Trường (field): Cái gì đó hiện hữu trong khắp không-thời gian, trái với một hạt chỉ hiện hữu tại một điểm ở thời gian nào đó.

Tần số (frequency): Tổng số chu kỳ của một làn sóng trong một giây đồng hồ.

Tia gamma (gamma ray): Những sóng điện từ có độ dài rất ngắn, phát sinh từ sự suy biến phóng xạ hoặc bởi những đụng chạm giữa các hạt cơ bản. Tương đối tổng quát (general relativity): Lý thuyết của Einstein đặt căn bản trên điều tin tưởng rằng các định luật khoa học đều giống nhau đối với mọi người quan sát, bất kể họ chuyển động như thế nào. Thuyết này giải thích hấp lực theo dạng cong của không-thời gian bốn chiều.

Trắc địa tuyến (geodesic): Con đường ngắn nhất (hoặc dài nhất) giữa hai điểm.

Năng lượng đại thống nhất (grand unification energy): Người ta tin rằng ở trên năng lượng này lực điện từ, lực yếu và lực mạnh trở thành bất khả phân biệt.

Thuyết đại thống nhất (GUT - grand unified theory): Lý thuyết thống nhất lực điện từ, lực mạnh và lực yếu.

Thời gian tưởng tượng (imaginary time): Thời gian đo bằng những con số tưởng tượng.

Hình nón ánh sáng (light cone): Một bề mặt trong không-thời gian đánh dấu những chiều hướng mà các tia sáng có thể đi qua một biến cố.

Giây ánh sáng (hoặc năm ánh sáng): Khoảng cách mà ánh sáng di chuyển trong một giây (hoặc một năm).

Từ trường (magnetic field): Trường của từ lực, ngày nay đã được hợp nhất với điện lực thành lực điện từ.

Khối lượng (mass): Số lượng của vật chất trong một vật thể; quán tính của vật thể, hoặc sự kháng cự của vật thể đối với độ gia tốc.

Bức xạ bối cảnh sóng ngắn (microwave background radiation): Bức xạ từ sự rực sáng của vũ trụ nóng trong thời kỳ sơ khai, ngày nay nó đã chuyển đỏ nhiều tới độ chúng ta không nhận thấy nó là ánh sáng mà là những sóng ngắn (những sóng vô tuyến có độ dài vài centimét).

Điểm kỳ dị trần truồng (naked singularity): Một điểm kỳ dị trong không-thời gian không có hố đen vây quanh.

Neutrino (trung vi tử): Một hạt cơ bản cực nhẹ (có thể không có khối lượng) chỉ chịu ảnh hưởng của lực yếu và hấp lực.

Trung hòa tử (neutron): Một hạt không có điện tích, rất giống proton, bao gồm khoảng một nửa những hạt trong nhân của đa số nguyên tử.

Trung tử tinh (neutron star): Một tinh tú nguội lạnh được chống đỡ bởi lực đẩy giữa các trung hòa tử theo nguyên lý loại trừ.

Điều kiện vô biên giới (no boundary condition): Ý kiến cho rằng vũ trụ là

Một phần của tài liệu Lược sử thời gian Steven Hawking (Trang 127 - 136)

Tải bản đầy đủ (PDF)

(136 trang)