Là tất cả những người được liệt kê trong bảng dưới (8 người) Chúng ta quan sát hiện tượng cháy nắng dựa trên 4 thuộc tính sau : chiều cao (cao, trung bình, thấp), màu tóc

Một phần của tài liệu lap trinhc (Trang 92 - 98)

II. HỌC BẰNG CÁCH XÂY DỰNG CÂY ĐỊNH DANH

P là tất cả những người được liệt kê trong bảng dưới (8 người) Chúng ta quan sát hiện tượng cháy nắng dựa trên 4 thuộc tính sau : chiều cao (cao, trung bình, thấp), màu tóc

tượng cháy nắng dựa trên 4 thuộc tính sau : chiều cao (cao, trung bình, thấp), màu tóc (vàng, nâu, đỏ) cân nặng (nhẹ, TB, nặng), dùng kem (có, không),. Ta gọi các thuộc tính này gọi là thuộc tính dẫn xuất.

Dĩ nhiên là trong thực tế để có thể đưa ra được một kết luận như vậy, chúng ta cần nhiều dữ liệu hơn và đồng thời cũng cần nhiều thuộc tính dẫn xuất trên. Ví dụ đơn giản này chỉ nhằm để minh họa ý tưởng của thuật toán máy học mà chúng ta sắp trình bày.

Tên Tóc Ch.Cao Cân

Nặng Dùng kem? Kết quả

Sarah Vàng T.Bình Nhẹ Không Cháy Dana Vàng Cao T.Bình Có Không Alex Nâu Thấp T.Bình Có Không Annie Vàng Thấp T.Bình Không Cháy Emilie Đỏ T.Bình Nặng Không Cháy Peter Nâu Cao Nặng Không Không John Nâu T.Bình Nặng Không Không Kartie Vàng Thấp Nhẹ Có Không

Ý tưởng đầu tiên của phương pháp này là tìm cách phân hoạch tập P ban đầu thành các tập Pi sao cho tất cả các phần tử trong tất cả các tập Pi đều có chung thuộc tính mục tiêu.

P = P1 P2 ... Pn và∀ (i,j) i j : thì (Pi Pj = ) và∀ i, k,l : pk Pi pl Pj thì f(pk) = f(pl) i, k,l : pk Pi pl Pj thì f(pk) = f(pl)

Sau khi đã phân hoạch xong tập P thành tập các phân hoạch Pi được đặc trưng bởi thuộc tính đích ri (ri R), bước tiếp theo là ứng với mỗi phân hoạch Pi ta xây dựng luật Li : GTi

ri trong đó các GTi là mệnh đề được hình thành bằng cách kết hợp các thuộc tính dẫn xuất.

Một lần nữa, vấn đề hình thức có thể làm bạn cảm thấy khó khăn. Chúng ta hãy thử ý tưởng trên với bảng số liệu mà ta đã có.

Có hai cách phân hoạch hiển nhiên nhất mà ai cũng có thể nghĩ ra. Cách đầu tiên là cho

mỗi người vào một phân hoạch riêng (P1 = {Sarah}, P2 = {Dana}, … tổng cộng sẽ có 8 phân hoạch cho 8 người). Cách thứ hai là phân hoạch thành hai tập, một tập gồm tất cả những người cháy nắng và tập còn lại bao gồm tất cả những người không cháy nắng. Tuy đơn giản nhưng phân hoạch theo kiểu này thì chúng ta chẳng giải quyết được gì !!

II.1. Đâm chồi

Chúng ta hãy thử một phương pháp khác. Bây giờ bạn hãy quan sát thuộc tính đầu tiên – màu tóc. Nếu dựa theo màu tóc để phân chia ta sẽ có được 3 phân hoạch khác nhau ứng với mỗi giá trị của thuộc tính màu tóc. Cụ thể là :

Pvàng = { Sarah, Dana, Annie, Kartie } Pnâu = { Alex, Peter, John }

Pđỏ = { Emmile }

* Các người bị cháy nắng được gạch dưới và in đậm.

Thay vì liệt kê ra như trên, ta dùng sơ đồ cây để tiện mô tả cho các bước phân hoạch sau :

Quan sát hình trên ta thấy rằng phân hoạch Pnâu và Pđỏ thỏa mãn được điều kiện "có chung thuộc tính mục tiêu" (Pnâu chứa toàn người không cháy nắng, Pđỏ chứa toàn người cháy nắng).

Còn lại tập Pvàng là còn lẫn lộn người cháy năng và không cháy nắng. Ta sẽ tiếp tục phân hoạch tập này thành các tập con. Bây giờ ta hãy quan sát thuộc tính chiều cao. Thuộc tính này giúp phân hoạch tập Pvàng thành 3 tập con : PVàng, Thấp = {Annie, Kartie}, PVàng, T.Bình= {Sarah} và PVàng,Cao= { Dana }

Nếu nối tiếp vào cây ở hình trước ta sẽ có hình ảnh cây phân hoạch như sau :

Quá trình này cứ thế tiếp tục cho đến khi tất cả các nút lá của cây không còn lẫn lộn giữa cháy nắng và không cháy nắng nữa. Bạn cũng thấy rằng, qua mỗi bước phân hoạch cây phân hoạch ngày càng "phình" ra. Chính vì vậy mà quá trình này được gọi là quá trình "đâm chồi". Cây mà chúng ta đang xây dựng được gọi là cây định danh.

Đến đây, chúng ta lại gặp một vấn đề mới. Nếu như ban đầu ta không chọn thuộc tính màu tóc để phân hoạch mà chọn thuộc tính khác như chiều cao chẳng hạn để phân hoạch thì sao? Cuối cùng thì cách phân hoạch nào sẽ tốt hơn?

II.2. Phương án chọn thuộc tính phân hoạch

Vấn đề mà chúng ta gặp phải cũng tương tự như bài toán tìm kiếm : "Đứng trước một ngã rẽ, ta cần phải đi vào hướng nào?". Hai phương pháp đánh giá dưới đây sẽ giúp ta chọn được thuộc tính phân hoạch tại mỗi bước xây dựng cây định danh.

II.2.1. Quinlan

Quinlan quyết định thuộc tính phân hoạch bằng cách xây dựng các vector đặc trưng cho mỗi giá trị của từng thuộc tính dẫn xuất và thuộc tính mục tiêu. Cách tính cụ thể như sau : Với mỗi thuộc tính dẫn xuất Acòn có thể sử dụng để phân hoạch, tính :

VA(j) = ( T(j, r1), T(j, r2) , …, T(j, rn) )

T(j, ri) = (tổng số phần tử trong phân hoạch có giá trị thuộc tính dẫn xuất A là j có giá trị thuộc tính mục tiêu là ri ) / ( tổng số phần tử trong phân hoạch có giá trị thuộc tính dẫn xuất A là j )

* trong đó r1, r2, … , rnlà các giá trị của thuộc tính mục tiêu

*

Như vậy nếu một thuộc tính A có thể nhận một trong 5 giá trị khác nhau thì nó sẽ có 5 vector đặc trưng.

Một vector V(Aj ) được gọi là vector đơn vị nếu nó chỉ có duy nhất một thành phần có giá trị 1 và những thành phần khác có giá trị 0.

Thuộc tính được chọn để phân hoạch là thuộc tính có nhiều vector đơn vị nhất.

Trở lại ví dụ của chúng ta, ở trạng thái ban đầu (chưa phân hoạch) chúng ta sẽ tính vector đặc trưng cho từng thuộc tính dẫn xuất để tìm ra thuộc tính dùng để phân hoạch. Đầu tiên là thuộc tính màu tóc. Thuộc tính màu tóc có 3 giá trị khác nhau (vàng, đỏ, nâu) nên sẽ có 3 vector đặc trưng tương ứng là :

VTóc(vàng) = ( T(vàng, cháy nắng), T(vàng, không cháy nắng) ) Số người tóc vàng là : 4

Số người tóc vàng và không cháy nắng là : 2

Do đó

VTóc(vàng) = (2/4 , 2/4) = (0.5, 0.5)

Tương tự

VTóc(nâu) = (0/3, 3/3) = (0,1) (vector đơn vị) Số người tóc nâu là : 3

Số người tóc nâu và cháy nắng là : 0

Số người tóc nâu và không cháy nắng là : 3

VTóc(đỏ) = (1/1, 0/1) = (1,0) (vector đơn vị)

Tổng số vector đơn vị của thuộc tính tóc vàng là 2

Các thuộc tính khác được tính tương tự, kết quả như sau :

VC.Cao(Cao) = (0/2,2/2) = (0,1) VC.Cao(T.B) = (2/3,1/3) VC.Cao(Thấp) = (1/3,2/3) VC.Nặng (Nhẹ) = (1/2,1/2) VC.Nặng (T.B) = (1/3,2/3) VC.Nặng (Nặng) = (1/3,2/3) VKem (Có) = (3/3,0/3) = (1,0) VKem(Không) = (3/5,2/5)

Như vậy thuộc tính màu tóc có số vector đơn vị nhiều nhất nên sẽ được chọn để phân hoạch.

Sau khi phân hoạch theo màu tóc xong, chỉ có phân hoạch theo tóc vàng (Pvàng) là còn chứa những người cháy nắng và không cháy nắng nên ta sẽ tiếp tục phân hoạch tập này. Ta sẽ thực hiện thao tác tính vector đặc trưng tương tự đối với các thuộc tính còn lại (chiều cao, cân nặng, dùng kem). Trong phân hoạch Pvàng, tập dữ liệu của chúng ta còn lại là :

Tên Ch.Cao Cân

Nặng Dùng kem? Kết quả

Sarah T.Bình Nhẹ Không Cháy Dana Cao T.Bình Có Không Annie Thấp T.Bình Không Cháy Kartie Thấp Nhẹ Có Không VC.Cao(Cao) = (0/1,1/1) = (0,1) VC.Cao(T.B) = (1/1,0/1) = (1,0) VC.Cao(Thấp) = (1/2,1/2) VC.Nặng (Nhẹ) = (1/2,1/2) VC.Nặng (T.B) = (1/2,1/2) VC.Nặng (Nặng) = (0,0) VKem (Có) = (0/2,2/2) = (0,1) VKem(Không) = (2/2,0/2)= (1,0)

2 thuộc tính dùmg kem và chiều cao đều có 2 vector đơn vị. Tuy nhiên, số phân hoạch của thuộc tính dùng kem là ít hơn nên ta chọn phân hoạch theo thuộc tính dùng kem. Cây định danh cuối cùng của chúng ta sẽ như sau :

II.2.2. Độ đo hỗn loạn

Thay vì phải xây dựng các vector đặc trưng như phương pháp của Quinlan, ứng với mỗi thuộc tính dẫn xuất ta chỉ cần tính ra độ đo hỗn loạn và lựa chọn thuộc tính nào có độ đo hỗn loại là thấp nhất. Công thức tính như sau :

Một phần của tài liệu lap trinhc (Trang 92 - 98)

Tải bản đầy đủ (DOC)

(103 trang)
w