Định lí 1 (Định lí cơ bản về số nguyên tố):
Mọi số nguyên dơng n, n > 1, đều có thể đợc viết một cách duy nhất (không tính đến việc sắp xếp các nhân tử) dới dạng:
1 2
1e 2e ... ek,
k
n= p p p
với k, ei là số tự nhiên và pi là các số nguyên tố thoả mãn: 1 < p1 < p2 <...< pk
Khi đó, dạng phân tích trên đợc gọi là dạng phân tích chính tắc của số n.
Bài 15: Tìm các ớc nguyên tố nhỏ nhất và lớn nhất của số:
A = 2152 + 3142
H. Dẫn:
- Tính trên máy, ta có: A = 144821
- Đa giá trị của số A vào ô nhớ A : 144821 SHIFT STO A - Lấy giá trị của ô nhớ A lần lợt chia cho các số nguyên tố từ số 2:
ANPHA A ữ 2 = (72410,5) ANPHA A ữ 3 = (48273,66667) ....
tiếp tục chia cho các số nguyên tố: 5, 7, 11, 13,...,91: ta đều nhận đợc A không chia hết cho các số đó. Lấy A chia cho 97, ta đợc:
ANPHA A ữ 97 = (1493) Vậy: 144821 = 97 x 1493
Nhận xét: Nếu một số n là hợp số thì nó phải có ớc số nguyên tố nhỏ hơn n.
⇒ để kiểm tra xem 1493 có là hợp số hay không ta chỉ cần kiểm tra xem 1493 có chia hết cho số nguyên tố nào nhỏ hơn 1493 40< hay không.
- Thực hiện trên máy ta có kết quả 1493 không chia hết cho các số nguyên tố nhỏ hơn 40 ⇒ 1493 là số nguyên tố.
Vậy A = 2152 + 3142 có ớc số nguyên tố nhỏ nhất là 97, lớn nhất là 1493.
Bài 15: Tìm các ớc nguyên tố nhỏ nhất và lớn nhất của số:
A = 10001
Bài 16: Số N = 27.35.53 có bao nhiêu ớc số ?
Giải:
- Số các ớc số của N chỉ chứa thừa số: 2 là 7, 3 là 5, 5 là 3 - Số các ớc số của N chứa hai thừa số nguyên tố:
2 và 3 là: 7x5 = 35; 2 và 5 là: 7x3 = 21; 3 và 5 là: 5x3 = 15 - Số các ớc số của N chứa ba thừa số nguyên tố 2, 3, 5 là 7x5x3 = 105 Nh vậy số các ớc số của N là: 7 + 5 + 3 + 35 + 21 + 15 + 105 + 1 = 192.
Định lí 2 (Xác định số ớc số của một số tự nhiên n):
Cho số tự nhiên n, n > 1, giả sử khi phân tích n ra thừa số nguyên tố ta đợc:
1 2
1e 2e ... ek,
k
n= p p p
với k, ei là số tự nhiên và pi là các số nguyên tố thoả mãn: 1 < p1 < p2 <...< pk
Khi đó số ớc số của n đợc tính theo công thức:
τ(n) = (e1 + 1) (e2 + 1)... (ek + 1)
Bài 17: (Thi giải Toán trên MTBT lớp 10 + 11 tỉnh Thái Nguyên - Năm học 2003-2004)
Hãy tìm số các ớc dơng của số A = 6227020800.
Giải:
- Phân tích A ra thừa số nguyên tố, ta đợc: A = 210.35.52.7.11.13
áp dụng định lí trên ta có số các ớc dơng của A là:
τ(A) = 11.6.3.2.2.2 = 1584
Bài 18: (Đề thi chọn đội tuyển tỉnh Phú Thọ tham gia kì thi khu vực năm 2004):
Có bao nhiêu số tự nhiên là ớc của:
N = 1890 x 1930 x 1945 x 1954 x 1969 x 1975 x 2004
Giải:
- Phân tích N ra thừa số nguyên tố, ta đợc:
N = 25 x 34 x 55 x 7 x 11 x 79 x 167 x 179 x 193 x 389 x 977
áp dụng định lí 2, ta có số các ớc dơng của N là:
τ (N)= 6 x 5 x 6 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 46080