2. Mô hình một số thuật toán dự báo trong mô hình chuỗi thời gian mờ
2.1. Mô hình thuật toán của Song và Chissom
Trong phần này, sử dụng khái niệm và phương pháp dự báo của chuỗi thời gian mờ được Song et. al. và Chissom đưa ra để xây dựng thuật toán dự báo cho chuỗi thời gian.
Giả sử U là không gian nền: U = u1,u2,....,un . Tập A là mờ trên không gian nền U nếu A được xác định bởi hàm:
A : U [0.1]
A được gọi là hàm thuộc (Membership function). Còn với bất kỳ một phần tử u nào của A thì hàm A (u) được gọi là độ thuộc của u vào tập mờ A.
Tập mờ A trên không gian nền U được viết như sau: n n A A A u u u u u u A ( ) ( ) ... ( ) 2 2 1 1
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
42 Mô hình thuật toán gồm một số bước sau:
Bước1: Xác định tập nền U trên đó các tập mờ được xác định.
Bước 2: Chia các tập nền U thành một số các đoạn bằng nhau
Bước 3: Xác định các biến ngôn ngữ để diễn tả các tập mờ trên các khoảng đã chia của tập nền.
Bước 4: Mờ hoá các giá trị lịch sử của chuỗi thời gian
Bước 5: Chọn tham số w >1 thích hợp và tính Rw (t,t-1) và dự báo theo công thức sau:
F(t) = F(t - 1)。Rw
(t, t - 1),
Trong đó F(t) là giá trị dự báo mờ tại thời điểm t còn F(t-1) là giá trị dự báo mờ tại thời điểm t -1. Mối quan hệ mờ được tính như sau:
Rw(t, t - 1) = FT(t – 2) × F(t - 1)∪FT(t - 3) × F(t - 2)∪…∪FT(t - w) × F(t – w + 1)
Trong đó T là toán tử chuyển vị, dấu “x” là toán tử tích Cartesian còn w được gọi là “mô hình cơ sở” mô tả số lượng thời gian trước thời điểm t.
Bước 6: Giải mờ giá trị dự báo mờ.