Những nghiên cứu của mạng nơron đƣợc xuất phát từ ý tƣởng là tìm hiểu những nguyên lý hoạt động của bộ não con ngƣời, từ đó ứng dụng để thiết kế các hệ thống có thể thực hiện những nhiệm vụ phức tạp.
Thực tế, mạng nơron có liên quan đến các lĩnh vực nhƣ: học, thích nghi, khái quát hoá và tối ƣu hóa. Trong các lĩnh vực này thì: sự đoán nhận, học, hoạt động và quyết định là những vấn đề liên quan mật thiết với kỹ thuật dò đƣờng. Việc ứng dụng mạng nơron vào kỹ thuật tìm đƣờng cho phép cải thiện những khả năng học và thích nghi đáp ứng đƣợc những thay đổi trong môi trƣờng có thông tin không chính xác, không nhất quán và không đầy đủ. Kỹ thuật nơron có khả năng xử lý hiệu quả những dữ liệu không chính xác, kích thƣớc lớn, đây sẽ là công việc khó khăn nếu sử dụng phƣơng pháp truyền thống.
Mạng nơron là một hệ thống cho phép xử lý những thông tin song song và phân tán trên từng nơron, những nơron này đƣợc kết nối với nhau theo một mô hình nhất định. Việc học trong mạng nơron có thể đƣợc giám sát hoặc không đƣợc giám sát. Học giám sát là quá trình học sử dụng những thông tin mẫu đã đƣợc phân loại, trong khi học không giám sát chỉ sử dụng những thông tin tối thiểu không đƣợc phân loại. Những giải thuật học không giám sát có độ phức tạp tính toán thấp hơn cho kết quả chính xác hơn những giải thuật học giám sát.
Ngoài ra mạng nơron còn đƣợc ứng dụng trong bài toán phân loại và nhận dạng. Giải pháp giải quyết bài toán phân loại trong lộ trình di chuyển của ngƣời máy là succesfully phƣơng pháp này có nền tảng là mạng nơron cạnh tranh ( Bekey, G.A. & Goldberg, K. 1993). Không chỉ có vậy mạng nơron này còn đƣợc ứng dụng trong việc xác định các quỹ đạo di chuyển của ngƣời máy.
Để giúp robot tránh những chƣớng ngại vật mạng nơron với phƣơng pháp huấn luyện là trƣợt dốc và lan truyền đã đƣợc sử dụng. Để dẫn đƣờng cho ngƣời máy di chuyển trong môi trƣờng hoạt động mạng nơron giám sát đã đƣợc sử dụng. Trong môi trƣờng hoạt động của mình ngƣời máy học bởi mạng nơron, tại mỗi bƣớc robot dự đoán các bƣớc kế tiếp và từ đó phát sinh những tín hiệu điều khiển robot di chuyển.
Có thể nói việc ứng dụng mạng nơron để lập lộ trình di chuyển cho robot sẽ giúp cho robot di chuyển linh hoạt hơn và đây cũng là một công việc quan trọng trong kỹ thuật robot. Từ những ứng dụng của mạng nơron trong kỹ thuật robot, ta nhận thấy việc ứng dụng công nghệ này là vô cùng quan trọng, nó sẽ là giải pháp khả thi có tính đột phá để nâng cao khả năng hoạt động của robot trong môi trƣờng hoạt động, từ đó ứng dụng vào thực tế cuộc sống.