MỘT HẰNG ĐẲNG THỨC THÚ VỊ

Một phần của tài liệu Giải Toán như thế nào ? (Trang 45 - 47)

Với mọi số thực a, b, c, ta có : (a + b)(a + c) = a2 + (ab + bc + ca) = a(a + b + c) + bc (*).

Với tôi, (*) là hằng đẳng thức rất thú vị. Trước hết, từ (*) ta có ngay :

Hệ quả 1 : Nếu ab + bc + ca = 1 thì a2 + 1 = (a + b)(a + c).

Hệ quả 2 : Nếu a + b + c = 1 thì a + bc = (a + b)(a + c).

Bây giờ, chúng ta đến với một vài ứng dụng của (*) và hai hệ quả trên.

Bài toán 1 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Hãy tính giá trị của biểu thức :

Lời giải : Theo hệ quả 1 ta có

a2 + 1 = a2 + (ab + bc + ca) = (a + b)(a + c) ; b2 + 1 = b2 + (ab + bc + ca) = (b + a)(b + c) ; c2 + 1 = c2 + (ab + bc + ca) = (c + a)(c + b). Suy ra

Vì vậy A = a(b + c) + b(c + a) + c(a + b) = 2(ab + bc + ca) = 2.

Vấn đề sẽ khó hơn khi ta hướng tới việc đánh giá các biểu thức.

Lời giải : a) Sử dụng bất đẳng thức Cô-si cho hai số dương a(a + b + c) ; bc : 1 = (a + b)( a + c) = a(a + b + c) + bc ≥

b) Sử dụng bất đẳng thức Cô-si cho ba số dương a2 ; (ab + bc + ca)/2 ; (ab + bc + ca)/2

1 = (a + b)( a + c) = a2 + (ab + bc + ca) =

Bài toán 3 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng :

Lời giải : Theo hệ quả 1 ta có

Sử dụng bất đẳng thức Cô-si cho hai số dương a2 + ab ; a2 + ac :

Tương tự ta có

Từ các kết quả trên ta suy ra :

Bài toán sau đây nguyên là đề thi Châu á - Thái Bình Dương năm 2002 đã được viết lại cho đơn giản hơn (thay (1/x ; 1/y ; 1/z) bởi (a ; b ; c)).

Lời giải : Theo hệ quả 2 và bất đẳng thức Bu-nhi-a-cốp-ski ta có

Tương tự ta có

Từ các kết quả trên ta suy ra :

Để kết thúc, xin các bạn làm thêm một số bài tập :

Bài tập 1 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Hãy tính giá trị của biểu thức :

Bài tập 2 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng :

Bài tập 3 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng : (a + bc)(b + ca)(c + ab) ≥ 64/81(ab + bc + ca)2.

Phan Thị Mùi

(Giáo viên trường THCS Trần Quốc Toản, TX. Tuy Hòa, Phú Yên)

Một phần của tài liệu Giải Toán như thế nào ? (Trang 45 - 47)

Tải bản đầy đủ (DOC)

(100 trang)
w